이마앞겉질을 제거시킨 흰쥐 앞뇌의 바닥핵무리에서 변성축삭종말의 미세구조연구

Ultrastructure of Degenerating Axon Terminals in the Basal Forebrain Nuclei of the Rat following Prefrontal Decortication

  • 안병준 (순천향대학교 의과대학 해부학교실) ;
  • 고정식 (순천향대학교 의과대학 해부학교실) ;
  • 안의태 (순천향대학교 의과대학 해부학교실)
  • Ahn, Byung-June (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Ko, Jeong-Sik (Department of Anatomy, College of Medicine, Soonchunhyang University) ;
  • Ahn, E-Tay (Department of Anatomy, College of Medicine, Soonchunhyang University)
  • 발행 : 2005.09.01

초록

중추신경계통에서도 최고중추인 이마앞겉질 (prefrontal cortex)은 거의 모든 대뇌겉질과 연결되어 있어서 대뇌겉질 각 부분에 저장된 감각, 운동, 언어... 등 모든 정보를 받을 뿐만 아니라, 앞뇌의 바닥핵들 (basal forebrain nuclei)을 비롯한 많은 신경핵들과도 연결되어 있어서 생체 내부환경과 본능에 관한 정보도 받아드린다. 이들 연결을 통해서 이마앞겉질은 변연계통의 본능, 감정, 기억, 학습기능과 줄무늬체계통의 적절한 표현, 대응, 절차기억, 운동조절기능들을 연계하고 조정한다. 앞뇌의 바닥핵들(꼬리핵 caudate nucleus, 줄무늬체바닥핵 fundus striati nucleus, 중격옆핵 accumbens septi nucleus, 중격핵 septal nucleus)도 역시 변연계통과 줄무늬체계통 사이에서 해부학적으로나 기능적으로도 교차기능이 있는 것으로 알려져 있다. 이 실험은 흰쥐의 이마앞겉질은 제거한 다음, 앞쪽 앞뇌의 바닥핵들에서 변성종말들이 있는지 여부와 그 미세구조를 관찰하려고 시행했다. $250{\sim}300g$된 흰쥐를 실험동물로 이용하였으며, 흰쥐들을 정상군, 대조군, 수술군으로 구분하였다. 수술군은 마취시킨 다음, 뇌수술장치에 고정시키고, 머리피부를 절개한 다음, 이마뼈에 구멍을 만들고, 이 구멍을 통해 이마앞겉질을 흡인하여 제거했다. 대조군은 이마뼈에 구멍을 만드는 과정까지만 실행하였고, 정상군은 아무조치도 취하지 않았다. 수술 후 2일 경과 후에 전자현미경 관찰을 위해 1% glutaraldehyde-1% paraldehyde 혼합액 (pH 7.4)에 1차 고정하였고, 뇌를 적출하여 고정액에 냉장시켰다가, 다음날 해당 신경핵을 적출하여 2차 고정액 (2% osmium tetroxide액)에 고정하였다. Araldite 혼합액에 포매하여 ultratome-V로 자른 절편은 4% uranyl acetate와 2.7% lead citrate로 염색하여 JEM 100CX-II 전자현미경으로 관찰하였다. 관찰결과 네 신경핵에서 모두 변성 축삭종말이 관찰되었는데, 출현비율은 상당한 차이를 보여서 가장 변성이 심한 신경핵은 꼬리핵 이었고, 다음은 줄무늬체바닥핵, 중격옆핵, 중격핵의 순서였다. 변성축삭종말이 각 부위에서 연접하는 모양을 비교한 결과 꼬리핵과 줄무늬체바닥핵에서는 모두 가지돌기가시(dendritic spine)에 연접하였으나, 중격옆핵과 중격핵에서는 가지돌기 (dendrite)에 연접하는 것과 가지돌기가시에 연접하는 것이 혼재하였다. 이들 두 신경핵 무리는 이마앞겉질에서 기원하는 축삭종말의 연접차이로 볼 때 서로 다른 회로계통에 속할 것으로 생각되며, 문헌고찰을 통해서 꼬리핵과 줄무늬체바닥핵은 줄무늬체회로 (striatal circuit)에 속하고 중격옆핵과 중격핵은 변연계통회로(limbic circuit)에 속할 것으로 판정했다. 이마앞겉질은 생리적, 약리적, 신경학적 및 형태학적 근거들로 보아 바닥핵들을 통해 변연계통과 대뇌겉질 전체에 영향을 미칠 것으로 여겨지는데, 본 실험에서는 네 종류의 바닥핵들, 즉 꼬리핵, 줄무늬체바닥핵, 중격옆핵 및 중격핵과 관련된 신경연접들을 관찰하였으며, 그 결과를 문헌 고찰한 결과 변연계통과 줄무늬체계통이 앞뇌의 바닥에 있는 신경핵들에서 형태학적 교차연결을 통해 정서와 마음의 상태를 행동과 대응으로 표현하는 중요한 신경회로가 존재함을 제안하였다.

Prefrontal cortex is a psychological and metaphysical cortex, which deals with feeling, memory, planning, attention, personality, etc. And it also integrates above-mentioned events with motor control and locomotor activities. Prefrontal cortex works as a highest CNS center, since the above mentioned functions are very important for one's successful life, and further more they are upgraded every moments through memory and learning. Many of these highest functions are supposed to be generated via forebrain basal nuclei (caudate nucleus, fundus striati nucleus, accumbens septi nucleus, septal nucleus, etc.). In this experiment, prefrontal efferent terminals within basal forebrain nuclei were ultrastructurally studied. Spraque Dawley rats, weighing $250{\sim}300g$ each, were anesthetized and their heads were fixed on the stereotaxic apparatus (experimental model, David Kopf Co.). Rats were incised their scalp, perforated a 3mm-wide hole on the right side of skull at the 11mm anterior point from the frontal O point (Ref. 13, Fig. 1), suctioned out the prefrontal cortex including cortex of the frontal pole, with suction instrument. Two days following the operations, small tissue blocks of basal forebrain nuclei were punched out, fixed in 1% glutaraldehyde-1% paraformaldehyde solution followed by 2% osmium tetroxide solutions. Ultrathin sections were stained with 1% borax-toluidin blue solution, and the stained sections were obserbed with an electron microscope. Degenerating axon terminals were found within all the basal forbrain nuclei. Numbers of degenerated terminals were largest in the caudate nucleus, next in order, in the fundus striati nucleus, in the accumbens septi nucleus, and the least in the septal nucleus. Only axospinous terminals were degenerated within the caudate nucleus and the fundus striati nucleus, and they showed the characters of striatal motor control system. Axodendritic and axospinous terminals were degenerated within the accumbens septi nucleus and the lateral septal nucleus, and they showed the characters of visceral limbic system. Prefrontal role in integrating the limbic system with the striatal system, en route basal forebrain nuclei, was discussed.

키워드

참고문헌

  1. Ahn ET, Hassler R, Wagner A, Christ JF: Ultrastructural changes in tissue columns of fundus striati (nucleus accumbens) surgically isolated from all extrastriatal connections. I. Experimental demonstrations of striatal interneurons and projection cells. Acta Anat 110 : 219-247, 1981 https://doi.org/10.1159/000145430
  2. Ahn ET, Hassler R: Ultrastructure of the fundus striati (nucleus accumbens septi) after isolation from extrastriatal connections. Appl Neurophysiol 42 : 17-20, 1979
  3. Ahn ET, Kim JK, Ko JK, Lee BH, Yang NG: The comparative morphological study on the connections of the nucleus accumbens septi and the nucleus fundus striati. Kor J Anayomy 22 : 198- 210, 1989. (Korean)
  4. Ahn ET, Kim JK, Yang NG, Ko JS, Lee BH, Park KH: Comparative study on the nucleus accumbens septi and the nucleus fundus striati. 3. changes in the neuropil following the lesion in the mamillay body or the extirpation of hippocampal formation. Kor J Electron Microscopy 18 : 35-48, 1988a. (Korean)
  5. Ahn ET, Nitsch C: Retraction sequence of dendritic spines after different experimental deafferentations of striatal neurons in the cat. J Anat 127 : 207-208, 1978
  6. Ahn ET, Yang NG, KIM JK, Ko JS, Lee BH, Park KH: Comparative study on the nucleus accumbens septi and the nucleus fundus striati. 2. classification of synaptic types. Kor J Electron Microscopy. 18 : 21-34, 1988b. (Korean)
  7. Ahn ET, Yang NG, Ko JS, Park KH: Ultrastructural research on the plasticity of the neuronal synapse. Kor J Anatomy 21 : 61-75, 1988. (Korean)
  8. Ahn ET, Yang NG, Lee BH, Ko JS, Kim JK: Comparative study on the nucleus accumbens septi and the nucleus fundus striati. 1. classification of neuronal cell types. Kor J Electron Microscopy. 18 : 1-20, 1988c. (Korean)
  9. Ahn ET: An electron microscopic autoradiographic study on the serotonin nerve terminals in the fundus striati of rat. J Soonchunhang Unversity 5 : 93-105, 1982. (Korean)
  10. Ahn ET: Electron microscopic study on the synaptic organization of fundus striati (nucleus accumbens septi) in rat. J Soonchunhang University 4 : 101-114, 1981. (Korean)
  11. Ahn S, Phillips AG: Dopaminergic correlates of sensoryspecific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. J Neurosci 19 (RC 29) : 1-6, 1999
  12. Breier A, Buchanan RW, Elkashef A, Munson RC, Kirkpatrick B, Gellad F: Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures. Arch Gen Psychiatry 49 : 921-926, 1999
  13. Brockhaus H: Zur feineren Anatomie des Septum und des Striatum. J Psycol Neurol 51 : 1-56, 1942
  14. Brundege JM, Williams JT: Differential modulation of nucleus accumbens synapses. Neurophysiol 88 : 142-151, 2002
  15. Budygin A, John CE, Mateo Y, Jones SR: Lack of cocaine effect on dopamine clearance in the core and shell of the nucleus accumbens of dopamine transporter knock-out mice. J Neurosci 22 : RC222: 1-4, 2002
  16. Carey RJ: Septal lesions enhance hyperactivity induced either by amphetamine or lesions of the nucleus accumbens septi. Behav Brain Res 5 : 43-52, 1982 https://doi.org/10.1016/0166-4328(82)90089-4
  17. Chiba T, Kayahara T, Nakano K: Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 888 : 83-101. 2001 https://doi.org/10.1016/S0006-8993(00)03013-4
  18. Christie MJ, James LB, Beart PM: An excitant amino acid projection from the medial prefrontal cortex to the anterior part of nucleus accumbens in the rat. J Neurochem 45 : 477-482, 1985 https://doi.org/10.1111/j.1471-4159.1985.tb04013.x
  19. Chung JW, Hassler R, Wagner A: Degenerated boutons in the fundus striati (nucleus accumbens septi) after lesion of theparafascicular nucleus in the cat. Cell Tiss Res 172 : 1-14, 1976
  20. Chung JW: Striatal synapses and their origin. Appl Neurophysiol 42 : 21-24, 1979
  21. Conrad SCA, Pfaff DW: Autoradiographic tracing of nucleus accumbens in the rat. Brain Res 113 : 589-596, 1976 https://doi.org/10.1016/0006-8993(76)90060-3
  22. Consolo S, Ladinsky H, Bianchi S, Ghezzi D: Apparent lack of dopaminergic-cholinergic link in the rat nucleus accumbens septi-tuberculum olfactorium. Brain Res 135 : 255-263, 1977 https://doi.org/10.1016/0006-8993(77)91029-0
  23. Davidson RJ: Well-being and affective style: neural substrates and biobehavioral correlates. Philos Trans R Soc Lond Biol Sci 359 : 1395-1411, 2004 https://doi.org/10.1098/rstb.2004.1510
  24. Davidson RJ: What does the prefrontal cortex 'do' in affect: perspectives on frontal EEG asymmetry research. Biol Psychol 67 : 219-234, 2004 https://doi.org/10.1016/j.biopsycho.2004.03.008
  25. De Olmos JS, Heimer L: The concept of the ventral striatopallidal system and extended amygdala. In Advancing from the Ventral Striatum to the Extended Amygdala. McGinty JF, Ed., N Y Acad Sci 877 : 1-32, 1999 https://doi.org/10.1111/j.1749-6632.1999.tb09258.x
  26. Finkelstein Y, Hod I: Activation of the cholinergic synapse in the septo-hippocampus under stress conditions. (English summary, article in Hebrew). Harefuah 117 : 154-157, 1989
  27. Font C, Martinez-Marcos A, Lanuza E, Hoogland PV, Martinez-Garcia F: Septal complex of the lizard Podarcis hispanica. II. Afferent connections. J Comp Neurol 14 : 489-511, 1997
  28. Gerfen CR: The neostriatal mosaic: compartmentalization of corticostriatal input and strionigral output system. Nature 311 : 461-464, 1984 https://doi.org/10.1038/311461a0
  29. Goto Y, O'Donnell P: Synchronous activity in the hippocampus and nucleus accumbens in vivo. J Neurosci 21: RC 131 : 1-5, 2001
  30. Groenewegen HJ, Wright CI, Beijef AVJ, Voorn P: Convergence and segregation of ventral striatal inputs and outputs. In Advancing from the Ventral Striatum to the Extended Amygdala. McGinty JF, Ed., N Y Acad Sci 877 : 49-63, 1999 https://doi.org/10.1111/j.1749-6632.1999.tb09260.x
  31. Gurdjian EC: The corpus striatum of the rat. J Comp Neurol 45 : 249-281, 1928 https://doi.org/10.1002/cne.900450110
  32. Haber SN, McFarland NR: The concept of the ventral striatum in non human primates. In Advancing from the Ventral Striatum to the Extended Amygdala. McGinty JF, Ed., N Y Acad Sci 877 : 33-48, 1999 https://doi.org/10.1111/j.1749-6632.1999.tb09259.x
  33. Hassler R, Ahn ET, Wagner A, Kim JS: Experimenteller Nachweis von intrastriatalen Synapsentypen und Axon-Kollateralen durch Isolierung des Fundus strtiati von allen exstrastriatalen Verbindungen. Anat Anz 143 : 413-436, 1978
  34. Hassler R, Chung JW, Rinne U, Wagner A: Selective degeneration of two of the nine types of synapses in cat caudate nucleus after cortical lesions. Exp Brain Res 31 : 67-80, 1978
  35. Hassler R, Chung JW: The discrimination of nine different types of synaptic boutons in the fundus striati (nucleus accumbens septi). Cell Tiss Res 168 : 489-505, 1976 https://doi.org/10.1007/BF00215999
  36. Heimer L, De Olmos J, Alheid GF, Zaborzsky L: 'Perestroika' in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87 : 109-165, 1991 https://doi.org/10.1016/S0079-6123(08)63050-2
  37. Hemby SE, Co C, Dworkin SI, Smith JE: Synergistic elevations in nucleus accumbens extracellular dopamine concentrations during self-administration of cocaine/heroin combinations (Speedball) in rats. J Pharmacol Exp Ther 288 : 274-280, 1999
  38. Jakab RL, Leranth C: Somatospiny neurons in the rat lateral septal area are synaptic targets of hippocamposeptal fibers: A combined EM/Golgi and degeneration study. Synapse 6 : 10-22, 1990 https://doi.org/10.1002/syn.890060103
  39. Kelly E: Functional specificity of ventral striatal compartment in appetitive behaviors. In Advancing from the Ventral Striatum to the Extended Amygdala. McGinty JF, Ed., N Y Acad Sci 877 : 71-89, 1999 https://doi.org/10.1111/j.1749-6632.1999.tb09262.x
  40. Kemp JM, Powell TPS: The site of termination of afferent fibers in the caudate nucleus. Phil Trans R Soc Lond B 262 : 41-427, 1971
  41. Kim JK, Ahn ET: Study on the synaptic organization of fundus striati following damage to the mammillary bodies in rat. J soonchunhang University 8 : 29-49, 1985. (Korean)
  42. Knutson B, Adams CM, Fong GW, Hommer D: Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21 (RC 159) : 1-5, 2001
  43. Koenig JFR, Klippel RA: The Rat Brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem. The Williams and Wilkins Co. Baltimore, 1963
  44. Koikegami H, Hirata Y, Oguma J: Studies on the paralimbic brain structures. 1. Definition and delimitation of the paralimbic brain structures and some experiments on the nucleus accumbens. Folia Psychiat Neurol Jap 21 : 151-284, 1967
  45. Leranth C, Frotscher M: Organization of the septal region in the rat brain: Cholinergic-GABAergic interconnections and the termination of hippocamposeptal fibers. J Comp Neurol 292 : 304-314, 1989
  46. Loopuijt LD, Sebens TB, Korf J: A mosaic-like distribution of dopamine receptors in rat neostriatum and its relationship to striosomes. Brain Res 405 : 405-408, 1987 https://doi.org/10.1016/0006-8993(87)90315-5
  47. Lorens SA, Sorensen JP, Harvey JA: Lesions in the nucleus accumbens septi of the rat: Behavioral and neurochemical effects. J Comp Neurol 73 : 284-290, 1970
  48. Louilot A, Le Moal M, Simon H: Opposite influences of dopaminergic pathways to the prefrontal cortex or the septum on the dopaminergic transmission in the nucleus accumbens. An in vivo voltammetric study. Neuroscience 29 : 45-56, 1989 https://doi.org/10.1016/0306-4522(89)90331-X
  49. Ma J, Shen B, Stewart S, Herrick A, Leung S: The septohippocampal system participates in general anes-thesia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev. 20 : 91-127, 1995 https://doi.org/10.1016/0165-0173(94)00007-C
  50. Miodonsky A: The nucleus accumbens in the brain of the dog. Acta Biol cracoviensia, Ser Zool 5: 109-115, 1962
  51. Mogenson Gj, Yang CR, Yim CY: Influence of dopamine on limbic inputs to the nucleus accumbens. In The Mesocorticolimbic Dopamine System, Kalivas PW, Nemeroff CB, Eds., N Y Acad Sci 537 : 86-100, 1988 https://doi.org/10.1111/j.1749-6632.1988.tb42098.x
  52. Olive MF, Koenig HN, Nannini MA, Hodge CW: Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine, and amphetamine. J Neurosci 21(RC 184) : 1-5, 2001
  53. Onteniente B, Simen H, Taghzouti K, Geffard M, Le Moal M, Calas A: Dopamine-GABA interactions in the nucleus accumbens and lateral septum of the rat. Brain Res 421 : 391-396, 1987 https://doi.org/10.1016/0006-8993(87)91315-1
  54. Parent A, Hazrari LN: Functional anatomy of the basal ganglia. J Neurosci 22(RC 200) : 1-6, 2002
  55. Pouzzner D: The symphonic architecture of mind: The circulating wavetrain of conciouness. Review article on line (douzzner@mega.nu) : 1-45, 2001
  56. Roitman MF, Na E, Anderson G, Jones TA, Bernstein IL: Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. J Neurosci 22(RC 225) : 1-5, 2002
  57. Sarter M, Bruno JP, Turchi J: Basal forebrain afferent projections modulating cortical acetyl choline, attention, and implications for neuropsychiatric disorders. In Advancing from the Ventral Striatum to the Extended Amygdala. McGinty JF, Ed., N Y Acad Sci 877 : 368-382, 1999 https://doi.org/10.1111/j.1749-6632.1999.tb09277.x
  58. Song HG, Ahn ET, Ko JS, Park KH: Ultrastructure of fronto-accumbens synapses after prefrontal decortication of the rat. Kor J Anatomy 36 : 405-416, 2003. (Korean)
  59. Tranel D, Bechara A, Denburg NL: Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision making, and emotional processing. Cortex 49 : 589-612, 2002
  60. Wall PM, Messier C: The hippocampal formation- orbitomedial prefrontal cortex circuit in the attentional control of active memory. Behav Brain Res 127 : 99-117, 2001 https://doi.org/10.1016/S0166-4328(01)00355-2
  61. Williams DJ, Crossman AR, Slater P: The efferent projections of the nucleus accumbens in the rat. Brain Res 130 : 217-227, 1977 https://doi.org/10.1016/0006-8993(77)90271-2
  62. Willner P: The mesolimbic dopamine system as a target for rapid antidepressant action. Int Clin Psychoparmacol 12(Suppl 3) : S7-S14, 1997 https://doi.org/10.1097/00004850-199705002-00003
  63. Yamano M, Luiten PG: Direct synaptic contacts of medial efferents with somatostatin immunoreactive neurons in the rat hippocampus. Brain Res Bull 22 : 993-1001, 1989 https://doi.org/10.1016/0361-9230(89)90011-7
  64. Yang NG, Ahn ET, Ko JS, Park KH: Electron microscopic study on the glial cells in the degenerating neuropil of the brain. J Soonchunhang Unversity 7 : 3-21, 1984. (Korean)
  65. Zaborszky L: The modular organization of brain systems. Basal forebrain: The last frontier. Prog Brain Res 136 : 359-372, 2002 https://doi.org/10.1016/S0079-6123(02)36030-8