• Title/Summary/Keyword: Degenerating axon terminal

Search Result 2, Processing Time 0.019 seconds

Ultrastructural Changes in the Ganglion and Granule-Containing Cells in the Heart of Vacor-Induced Diabetic Mongolian Gerbil (Vacor 유발 당뇨 모래쥐의 심장신경절과 과립함유세포의 미세구조)

  • Kang, Jung-Chaee;Yoon, Jae-Rhyong;You, Hong-Seok
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.107-123
    • /
    • 1993
  • The ultrastructural changes of the cardiac ganglion and granule-containing cells in the heart of vacor-induced diabetic Mongolian gerbils were studied by electron microscopy. After one month of vacor-induced diabetes the ganglion cells showed increase in numbers of dense bodies and mitochondria compared with the normal cardiac ganglion. Most of the satellite cells were filled with numerous phagosomes containing digested debris. Both electron-dense and lucent types of degenerating axon terminals were observed. The former was characterized by clusters of agranular vesicles and numerous mitochondria. The electron lucent type of degenerating axon terminal contained a few agranular vesicles and swollen mitochondria. Degenerating unmyelinated and myelinated axons contained large numbers of dense bodies, lamellar bodies, and mitochondria. Numerous macrophages containing phagosomes were reveled in the interstitial spaces. Some of the granule-containing cells in the heart showed a variety of degenerative changes and a decreased number of dense-cored vesicles. After three months of vacor-induced diabetes the unmyelinated and myelinated axons showed degenerative changes, whereas no structure changes could be demonstrated in intraatrial ganglion and granule containing cells. The satellite cells containing engulfed debris were observed in the cardiac ganglion cells. These results suggest that the degenerative changes occur in the cardiac ganglion cells of vacor-induced diabetic Mongolian gerbils as well as atrial granule-containing cells.

  • PDF

Ultrastructure of Degenerating Axon Terminals in the Basal Forebrain Nuclei of the Rat following Prefrontal Decortication (이마앞겉질을 제거시킨 흰쥐 앞뇌의 바닥핵무리에서 변성축삭종말의 미세구조연구)

  • Ahn, Byung-June;Ko, Jeong-Sik;Ahn, E-Tay
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.135-152
    • /
    • 2005
  • Prefrontal cortex is a psychological and metaphysical cortex, which deals with feeling, memory, planning, attention, personality, etc. And it also integrates above-mentioned events with motor control and locomotor activities. Prefrontal cortex works as a highest CNS center, since the above mentioned functions are very important for one's successful life, and further more they are upgraded every moments through memory and learning. Many of these highest functions are supposed to be generated via forebrain basal nuclei (caudate nucleus, fundus striati nucleus, accumbens septi nucleus, septal nucleus, etc.). In this experiment, prefrontal efferent terminals within basal forebrain nuclei were ultrastructurally studied. Spraque Dawley rats, weighing $250{\sim}300g$ each, were anesthetized and their heads were fixed on the stereotaxic apparatus (experimental model, David Kopf Co.). Rats were incised their scalp, perforated a 3mm-wide hole on the right side of skull at the 11mm anterior point from the frontal O point (Ref. 13, Fig. 1), suctioned out the prefrontal cortex including cortex of the frontal pole, with suction instrument. Two days following the operations, small tissue blocks of basal forebrain nuclei were punched out, fixed in 1% glutaraldehyde-1% paraformaldehyde solution followed by 2% osmium tetroxide solutions. Ultrathin sections were stained with 1% borax-toluidin blue solution, and the stained sections were obserbed with an electron microscope. Degenerating axon terminals were found within all the basal forbrain nuclei. Numbers of degenerated terminals were largest in the caudate nucleus, next in order, in the fundus striati nucleus, in the accumbens septi nucleus, and the least in the septal nucleus. Only axospinous terminals were degenerated within the caudate nucleus and the fundus striati nucleus, and they showed the characters of striatal motor control system. Axodendritic and axospinous terminals were degenerated within the accumbens septi nucleus and the lateral septal nucleus, and they showed the characters of visceral limbic system. Prefrontal role in integrating the limbic system with the striatal system, en route basal forebrain nuclei, was discussed.