고성능 유한요소를 이용한 평판구조물의 정적 및 동적해석

Static and Dynamic Analysis of Plate Structures using a High Performance Finite Element

  • 한인선 (한국과학기술원 건설환경공학과) ;
  • 김선훈 (영동대학교 토목환경공학과)
  • 발행 : 2005.09.01

초록

본 논문에서는 평판구조물의 정적 및 동적해석에 사용할 목적으로 성능이 향상된 평판유한요소를 제시하였다. 이 요소는 비적합변위형과 선택적 감차적분방법 그리고 대체전단변형률장을 복합적으로 적용하여 각각의 장점들을 포함하는 향상된 거동을 보여주고 있다. 또한 비적합변위형의 적용으로 발생되는 조각시험의 실패 문제점을 해결하기 위하여 직접수정법을 평판유한요소의 개선에 사용하였다. 대표적인 검증문제에 대한 수치해석작업을 통하여 본 연구에서 개발한 요소는 가상적인 제로에너지모드 및 전단잠김현상의 발생과 같은 문제를 나타내지 않음을 알 수 있었다. 특히 찌그러진 형상으로 모형화 한 경우에 있어서도 전단잠김현상이 발생하지 않았다. 본 연구에서 수행한 동적반응해석 시험에 있어서도 이론해와 잘 일치하는 결과를 보여주었다.

In this paper an enhanced quadratic finite element for static and dynamic analysis of plate structures is presented. The performance of a proposed plate element is improved by the coupled use of non conforming displacement modes, the selective integration scheme, and the assumed shear strain fields. An efficient direct modification method is also applied to this element to solve the problem such as failure of the patch test due to the adoption of non conforming modes. The proposed quadratic finite element does not show any spurious mechanism and does not produce shear locking phenomena even with distorted meshes. It is shown that the results obtained by this element converged to analytical solutions very rapidly tough numerical tests for standard benchmark problems. It is also noted that this element is applicable to transient dynamic analysis of Mindlin plates.

키워드

참고문헌

  1. 김선훈, 최창근(1988) Mindlin 평판유한요소의 개선, 한국전산구조공학회 논문집, 1(2), pp.83-90
  2. 최창근(2002) 유한요소법, 테크노프레스, 대한민국, pp.650
  3. 허명재 외(2000) 개선된 쉘 요소를 이용한 쉘 구조의 유한 요소해석, 한국전산구조공학회 논문집, 13(4), pp.449-459
  4. Bathe, K.J.(1982) Finite Element Procedures, Prentice Hall, NJ, pp.1039
  5. Choi, C.K., Kim, S.H.(1988) Reduced Integration, Nonconforming Modes and Their Coupling in Thin Plate Elements, Computers and Structures, 29, pp.57-62 https://doi.org/10.1016/0045-7949(88)90171-X
  6. Choi, C.K., Kim, S.H.(1989) Coupled Use of Reduced Integration and Non conforming Modes in Quadratic Mindlin Plate Element, Int. J. Num. Meth. Eng., 28, pp.1909-1928 https://doi.org/10.1002/nme.1620280814
  7. Choi, C.K., Chung, K.Y., Lee, T.Y.(2001) A Direct Modification Method for Strains due to Non Conforming Modes, Structural Engineering and Mechanics, 11(3), pp.325-340
  8. Choi, C.K., Yoo, S.W.(1991) Combined Use of Multiple Improvement Techniques in Degenerated Shell Element, Computers and Structures, 39, p.557-569 https://doi.org/10.1016/0045-7949(91)90064-S
  9. Donea, J., Lamain, G.(1987) A Modified Representation of Transverse Shear in C0 Quadrilateral Plate Element, Camp. Meth. Appl. Mech. Eng., 63, pp.183-207 https://doi.org/10.1016/0045-7825(87)90171-X
  10. Hinton, E., Huang, H.C.(1986) A Family of Quadrilateral Mindlin Plate Elements with Substitute Shear Strain Fields, Computers and Structures, 23, pp.409-431 https://doi.org/10.1016/0045-7949(86)90232-4
  11. Huges, T.J.R., Cohen, M.(1978) The 'Heterosis' Finite Element for Plate Bending, Computers and Structures, 9, pp.445-450 https://doi.org/10.1016/0045-7949(78)90041-X
  12. Kim, S.H., Choi, C.K.(1992) Improvement of Quadratic Finite Element for Mindlin Plate Bending, Int. J. Num. Meth. Eng., 34, pp.197-208 https://doi.org/10.1002/nme.1620340112
  13. Pugh, E.D.L., Hinton, E., Zienkiewicz, O.C. (1978) A Study of Quadrilateral Plate Bending Elements with Reduced Integration, Int. J. Num. Meth. Eng., 12, pp.1059-1079 https://doi.org/10.1002/nme.1620120702
  14. Reismann, H., Lee, Y. (1969) Forced Motions of Rectangular Plates, Developments in Theoretical and Applied Mechanics, 4
  15. Taylor, R.L., Beresford, P.J., Wilson, E.L. (1976) A Non conforming Element for Stress Analysis, Int. J. Num. Meth. Eng., 10(6), pp. 1211-1219 https://doi.org/10.1002/nme.1620100602
  16. Wilson, E.L., Ibrahirnvegovic, A. (1990) A Use of Incompatible Displacement Modes for the Calculation of Element Stiffness and Stresses', Finite Elements in Analysis and Design, 7, pp.229-241 https://doi.org/10.1016/0168-874X(90)90034-C
  17. Zienkiewicz, O.C., Taylor, R.L.(1989) The Finite Element Method: Basic Formulation and Linear Problems, Vol. I, McGraw Hill, London, p.648