Effect of Suboptimal Temperature Incubation on the Resistance of Lactobacillus acidophilus CT 01 to Storage and Drying

저온배양에 따른 Lactobacillus acidophilus CT 01의 저장 및 건조에 대한 저항성

  • Yu Keun-Hyung (Department of Food Science and Technology in Animal Resources, Kangwon National University) ;
  • Kwon Il-Kyoung (Department of Food Science and Technology in Animal Resources, Kangwon National University) ;
  • Kim Gur-Yoo (Department of Food Science and Technology in Animal Resources, Kangwon National University)
  • 유근형 (강원대학교 동물자원과학대학 축산식품과학과) ;
  • 권일경 (강원대학교 동물자원과학대학 축산식품과학과) ;
  • 김거유 (강원대학교 동물자원과학대학 축산식품과학과)
  • Published : 2005.03.01

Abstract

This study was carried out to determine the storage, cryotolerance, heat and drying resistance, when Lactobacillus acidophilus CT 01 isolated from preweaned piglet feces growing at suboptimal temperature. L. acidophilus CT 01 suboptimal temperature incubated for 48 hours had the slowest growth rate at 22℃ but the highest viable cell number after 36 hours at 22℃, with 1.3×10/sup 9/ CFU/mL. In case of 4 and 20℃ storage, the suboptimal temperature incubated groups had a viability higher than the control (p<0.01). The cryotolerance of suboptimal temperature incubated L. acidophilus CT 01 was a higher than the control (p<0.01). When L. acidophilus CT 01 was heat treated at 60℃ for 15 minutes and 30 minutes, the suboptimal temperature incubated L. acidophilus CT 01 at 22℃ had a viability higher more than the control (p<0.01). L. acidophilus CT 01 incubated suboptimal temperature was inoculated by 30% to the carrier, and dried at 50℃ for 12 hours had the highest viability in the suboptimal temperature incubated L. acidophilus CT 01 at 28℃.

본 연구는 이유 전 자돈의 분변으로부터 분리·동정한 젖산균의 저온 배양에 따른 기초지식을 확보하고 이를 생균제 생산에 적용함으로써 제품내 젖산균의 생존력을 증대시키기 위해 실시하였다. 이유 전 자돈의 분변으로부터 분리·동정한 젖산균은 Lactobacillus acidophilus 1로 판명되었으며, 이를 L. acidophilus CT 01이라 명명하였다. 48시간 동안 저온 배양한 L. acidophilus CT 01은 배양온도가 22℃일 때 생장속도가 가장 느리게 나타났으나 배양 12시간 이후부터 생균수가 급격히 증가하기 시작하여 배양 36시간에 1.3×10/sup 9/ CFU/mL로 최대 생균수를 나타냈다. L. acidophilus CT 01을 저온 배양하여 12일간 4℃와 20℃에 저장한 결과 4℃에 저장한 경우 저온 배양한 처리구의 생존률이 90.30와 90.67%로 대조구(85.81%) 보다 높은 생존률을 나타냈으며(p<0.01), 20℃ 저장시 28℃에서 24시간 저온 배양한 처리구에서 가장 높은 생존률(82.67%)을 나타냈다(p<0.01). L. acidophilus CT 01의 냉동 내성은 저온 배양한 처리구가 대조구보다 생존률이 95.73와 97.34%로 높게 나타났다(p<0.01). L. acidophilus CT 01을 60℃에서 15분과 30분 동안 열처리하여 열저항성을 시험한 결과 22℃에서 저온 배양한 처리구의 생존률이 0.203와 0.108%로 대조구에 비해 높게 나타났다(p<0.01). L. acidophilus CT 01을 저온 배양하여 부형제에 30% 접종하고 50℃에서 12시간 건조하여 생존률을 조사한 결과 저온 배양한 처리구가 가장 높은 생존률을 나타냈다

Keywords

References

  1. Baati, L., Fabre-Gea, C., Auriol, D., and Blanc., P. J. (2000) Study of the cryotolerance of Lactobacillus acidophilus : effect of culture and freezing conditions on the viability and cellular protein levels. Int. J. Food Microbiol. 59, 241-247 https://doi.org/10.1016/S0168-1605(00)00361-5
  2. Christman, M., Morgan, R., Jacobson, F., and Ame, B. (1985) Positive control of a regulon for defenses against oxidative stress and some heat shock proteins in Salmonella typhimurium. Cell. 41, 753-762 https://doi.org/10.1016/S0092-8674(85)80056-8
  3. Daemen, A. L. H. and van der Stege, H. J. (1982) The destruction of enzyme and bacteria during the spray drying of milk and whey. 2. The effect of the drying conditions. Neth. Milk Dairy J. 36, 211-229
  4. Fernandez Murga, M. L., de Valdez, G. F., and Anibal Disalvo, E. (2001) Effect of lipid composition on the stability of cellulra membranes during freeze-thawing of Lactobacillus acidophilus grown at different temperatures. Arch. Biochem. Biophys. 333, 179-184 https://doi.org/10.1016/0003-9861(51)90095-1
  5. Foster, J. W. (1991) Salmonella acid shock proteins are required for the adaptative acid tolerance response. J. Bacteriol. 173, 6896-6902
  6. Foster, J. W. and Hall, H. K. (1990) Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172, 771-778
  7. Grossman, A. D., Taylor, W. E., Burton, Z. F., Burgess, R. R., and Gross, C. A. (1985) Stringent response in Esherichia coli induces heat shock protein. J. Mol. Biol. 136, 357-365
  8. Hanson, D. J. (1985) Human health effects of animal feed drugs unclear. Chem. Eng. News. 63, 7-14
  9. Heyde, M. and Portalier, R. (1990) Acid shock proteins of Escherichia coli. FEMS Microbiol. Lett. 69, 19-26 https://doi.org/10.1111/j.1574-6968.1990.tb04168.x
  10. Ishibashi, N. and Shimamura, S. (1993) Bifidobacteria: Research and development in Japan. Food Technol. 46, 126-135
  11. Jeffery, R. B. and Chan, L. (1999) Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyphilization. Crybiol. 39, 88-102 https://doi.org/10.1006/cryo.1999.2190
  12. Kemp, G. and Kiser, J. (1970) Microbial resistance and public health aspects of use of mediate feed. J. Anim. Sci. 31, 1107-1117
  13. Kim, W. S., Khunajakr, N., and Dunn, N. W. (1998) Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis. Cryobiol. 37, 86-91 https://doi.org/10.1006/cryo.1998.2104
  14. Knorr, D. (1998) Technology aspects related to microorganisms in functional foods. Trends in Food Sci. and Technol. 9, 295-306 https://doi.org/10.1016/S0924-2244(98)00051-X
  15. Komatsu, Y., Obuchi, K., Iwahashi, H., Kaul, S. C., Ishimura, M., Fahy, G. M., and Rail, W. F. (1990) Deutrium oxide, dimethylsulfoxide and heat shock confer protection against hydrosatic pressure damage in yeast. Biochem. Biophys. Res. Commun. 174, 1141-1147 https://doi.org/10.1016/0006-291X(91)91539-O
  16. Leyer, G. J. and Johnson, E. A. (1993) Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl. Environ. Microbiol. 59, 1842-1847
  17. Lorca, G. L. and de Valdez, G. F. (1999) The Effect of suboptimal growth and growth phase on resistance of Lactobacillus acidophilus to environmental stress. Cryobiol. 39, 144-149 https://doi.org/10.1006/cryo.1999.2193
  18. Panoff, J. M., Thammavongs, B., Laplace, J. M., Hartke, A., Boutibonnes, P., and Auffray, A. (1995) Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL 1403. Cryobiology 32, 516-520 https://doi.org/10.1006/cryo.1995.1053
  19. Salminen, S. and von Wright, A. (1998) Lactic acid bacteria : Microbiology and Functional Aspects. Marcel Dekker Inc., New York
  20. Shin, J. G. (2003) Physiological properties of lactic acid bacteria exposed to low growth temperature. Ph. D. thesis, Seoul National Univ., Suwon, Korea
  21. Svensson, U. (1999) Industrial perspectives. In: Probiotics : A critical review. Tannock, G. W. (ed), Horizon Scientific Press, Wymondham, UK
  22. Teixeira, P., Castro, H., and Kirby, R. (1995a) Spray drying as method for preparing concentrated cultures of Lactobacillus bulgaricus. J. Appl. Biotech. 78, 456-462
  23. Teixeira, P., Castro, M. H., Malcata, F. X, and Kirby, R. M. (1995b) Survival of Lactobacillus delbrueckii ssp. bulgaricus following spray drying. J. Dairy Sci. 78, 1025-1031 https://doi.org/10.3168/jds.S0022-0302(95)76718-2
  24. Teixeira, P., Castro, H., Mohacsi-Farkas, C., and Kirby, R. (1997) Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J. Appl. Microbiol. 83, 219-226 https://doi.org/10.1046/j.1365-2672.1997.00221.x
  25. VanBogelen, R. A., Kelley, P. M., and Neidhardt, F. C. (1987) Differential induction of heat-shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 169, 26-32