Characteristics of Flux Decline in Microfiltration Capillary Membrane of Bentonite Colloidal Suspensions

정밀여과 모세관 막을 이용한 벤토나이트 콜로이드 현탁액의 투과유속 감소특성

  • Nam Suk-Tae (Department of Bio & Chemical Engineering, Kyungil University) ;
  • Han Myeong-Jin (Department of Bio & Chemical Engineering, Kyungil University)
  • 남석태 (경일대학교 공과대학 생명화학공학과) ;
  • 한명진 (경일대학교 공과대학 생명화학공학과)
  • Published : 2005.03.01

Abstract

Permeate flux decline in a microfiltration was analyzed by measuring the permeability of bentonite colloidal solution through polyethylene capillary membranes. The flux decline with time was due to the growth of cake layer on the membrane surface and to the pore blocking by particles. As the time approaches to steady state, the permeate flux is almost controlled by the cake filtration model. Faster flux decline at high trans-membrane pressure was attributed to the formation of denser packed cake layer and pore blocking. The ratio of permeate flux to the initial permeate flux, J/J₁, decreased with increasing the trans-membrane pressure, from 45% for 0.5 kg/sub f//㎠ to 38% for 2.0 kg/sub f//㎠. In comparing the ratio of each fouling component to the total fouling for the 0.5 kg/sub f//㎠ TMP condition, complete blocking was 23.4%, standard blocking was about 14.6% and cake filtration was 62.0%, respectively. Permeate flux through the membrane increases with cross flow velocity, and the effect of the variation of velocity is more significant at 1.0 kg/sub f//㎠ rather than at 2.0 kg/sub f//㎠ of the operation pressure. Permeate flux for the membrane having the average pore diameter of 0.34 ㎛ was higher than that for the membrane of 0.24 ㎛ pore size, with the higher flux with the low concentration of feed. On the operation using the membrane of 0.34 ㎛ pore, the pore blocking in the low concentration of 200 ppm is negligible relative to the pore blocking in the 1000 ppm feed.

폴리에틸렌 정밀여과 모세관막을 이용한 벤토나이트 콜로이드 현탁액의 투과유속 감소특성을 검토하였다. 운전시간이 경과하면서 투과유속이 감소되는 원인은 막표면 위에서 케익층의 성장과 입자들에 의한 세공막힘 때문이었으며, 운전시간이 경과하여 정상상태에 도달하면 투과유속은 케익여과 모델에 의해 지배받는다. 운전압력이 높은 경우의 투과유속 감소는 세공막힘과 케익층이 치밀해졌기 때문이다. 운전압력이 증가함에 따라 J/J₁는 감소하였으며, 0.5 kg/sub f//㎠일 때의 45%, 2.0 kg/sub f//㎠일 때 38%로 감소하였다. 운전압력 0.5 kg/sub f//㎠에서 총 막오염에 대한 성분오염의 비율은 표준세공막힘 14.6%, 완전세공막힘 23.4% 그리고 케익여과 62.0% 이었다. 순환흐름속도의 증가로 인해 투과유속은 증가하였고, 그 효과는 운전압력이 1.0 kg/sub f//㎠일 때가 운전압력 2.0 kg/sub f//㎠ 경우보다 컸다. 세공크기가 0.34 ㎛인 막의 투과유속은 세공의 크기가 0.24 ㎛인 막보다 컸으며, 용액의 농도에 따른 투과유속은 농도가 낮은 용액이 컸다. 세공크기가 0.34 ㎛인 막의 막오염 형태는 유사하지만 농도가 200 ppm인 용액의 경우 1000 ppm인 용액에 비하여 상대적으로 미약한 세공막힘 현상을 보였다.

Keywords

References

  1. W. S. Winston Ho and K. K. Sirkar, Membrane Handbook, pp. 446-453, Van Nostrand Reinhold, New York, (1992)
  2. 木村尙史, 膜學實驗 シリ-ズ-日本膜學會編, p86, 共立出版社,東京(1993)
  3. A. S. Jonsson, J. Lindau, R. Wimmerstedt, J. Brinck, and B. Jonsson, 'Influence of the concentration of a low-molecular organic solute on the flux reduction of a polyether-sulphone ultrafiltration membrane', J. Membrane Sci., 135, 117 (1997)
  4. A. B. Koltuniewicz, R. W. Field, and T. C. Arnot, Cross-flow and dead-end microfiltration of oily- water emulsion. Part I: Experimental study and analysis of flux decline, J. Membrane Sci., 102, 193 (1995)
  5. Y. K. Benkahla, A. Ould-Dris, M. Y. Jaffrin, and D. Si-Hassen, Cake growth mechanisn in crossflow micrifiktration of mineral suspension, J. Membrane Sci., 98, 107 (1995)
  6. R. Jiraratananon, D. Uttapap, and C. Tangamornsuksun, Self-forming dynamic membrane for ultrafiltration of pineapple juice, J. Membrane Sci., 129, 135 (1997)
  7. R. Jiraratananon, D. Uttapap, and P. Sampranpiboon, Crossflow microfiltration of colloidal suspension with the presence of macromolecular, J. Membrane Sci., 140, 57 (1998)
  8. W. R. Bowen, J. I. Calvo, and A. Hernandez, Steps of membrane blocking in flux decline during protein microfiltration, J. Membrane Sci., 101, 153 (1995)
  9. C. Gourgues, P. Aimar, and V. Sanchez, Ultrafiltration of bentonite suspension with hollow fiber membranes, J. membrane Sci., 74, 51 (1992)
  10. R. Rautenbach and G. Schock, Ultrafltration of macromolecular solutions and crossflow microfiltration of colloidal suspension, J. membrane Sci., 36, 231 (1988)
  11. G. T. Vladisavlievic, S. K. Milonjic, and V. L. Pavasovic, Flux decline and' gel resistance in unstirred ultrafiltration of aluminium hydrous oxide sol, J. Colloid and Interface Sci., 176, 491 (1995)
  12. J. Hermia, Constant pressure blocking filtration laws- Application to power law non-Newtonian fluids, Trans IChemE., 60, 183 (1982)
  13. S. S. Madaeni, Ultrafiltration of very dilute colloidal mixtures, Colloid & Surfaces, Physicochemical and Engineering Aspects, 131, 109 (1998)
  14. R. Snodhi, Y. S. Lin, and F. Alvarez, Crossflow filtration of chromium hydroxide suspension by ceramic membranes:fouling and its minimization by backpulsing, J. Membrane Sci., 174, 111 (2000)
  15. 박진용, 김현우, 최창균, '테일러 와류 정밀여과에서 막오염의 실험실적 연구 및 모델링', 멤브레인, 13(2), 88-100 (2003)