Isolation and Characterization of a New ${\gamma}$-Polyglutamic Acid Producer, Bacillus mesentericus MJM1, from Korean Domestic Chungkukjang Bean Paste

  • ZHAO , XIN-QING (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University) ;
  • PARK, KWAN-HYONG (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University) ;
  • JIN, YING-YU (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University) ;
  • LEE, IN HYUNG (Food and Life Science Major, School of Techno Science, Kookmin University) ;
  • YANG, YOUNG-YELL (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University) ;
  • JOO-WON SUH, (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University)
  • Published : 2005.02.01

Abstract

Poly-${\gamma}$-glutamic acid (PGA) is an unusual anionic polypeptide and has great potential as an environmentally and industrially significant biodegradable material. A new ${\gamma}$-PGA producer, Bacillus mesentericus MJM1, with high production capacity was isolated from Korean domestic Chungkuckjang bean paste. It produced ${\gamma}$-PGA at the level of 10 g/l in suitable media. The viscosities of 5% initially extracted mucin and purified ${\gamma}$-PGA solutions were 660 cps and 600 cps, respectively. The produced ${\gamma}$-PGA polymer consisted of 2,000 glutamic acid residues with even proportion of L and D types with molecular mass of about 200- 300 kDa. Bacillus mesentericus MJM1 displayed ${\gamma}$-glutamyltranspeptidase (${\gamma}$-GTP) activity that is known to play a key role in ${\gamma}$-PGA biosynthesis. The ${\gamma}$-GTP coding region was located on the plasmid of 5.8 kb. The plasmid, named pMMH1, is a rolling-circle replication (RCR) plasmid and additionally contained a replication origin and type I signal peptidase (sipP) coding region.

Keywords

References

  1. Abe, K., Y. Ito, and Y. Asada. 1997. Purification and properties of two isozymes of $\gamma-glutamyltranspeptidase$ from Bacillus subtilis TAM-4. Biosci. Biotech. Biochem. 61: 1621-1625 https://doi.org/10.1271/bbb.61.1621
  2. Accaoui, M. J., M. Enoju, and A Visvikis. 2000. $\gamma-Glutamyltranspeptidase-dependent$ glutathione catabolism results in activation of $NF-\kappaB$. Bioch. Biophy. Res. Comm. 276: 1062- 1067 https://doi.org/10.1006/bbrc.2000.3585
  3. Ashiuchi, M., C. Nawa, T. Kamei, J. J. Song, S. P. Hong, M. H. Sung, K Soda, and H. Misono. 2001. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 268: 5321- 5328 https://doi.org/10.1046/j.0014-2956.2001.02475.x
  4. Ashiuchi, M. and H. Misono. 2002. Biochemistry and molecular genetics of $poly-\gamma -glutamate$ synthesis. Appl. Microbiol. Biotech. 59: 9- 14 https://doi.org/10.1007/s00253-002-0984-x
  5. Ashiuchi, M., K Soda, and H. Misono. 1999. A poly-yglutamate synthetic system of Bacillus subtilis IFO 3336: Gene cloning and biochemical analysis. Biochem. Biophy. Res. Comm. 263: 6- 12 https://doi.org/10.1006/bbrc.1999.1298
  6. Ashiuchi, M., T. Kamei, D. H. Baek, S. Y. Shin, M. H. Sung, K Soda, T. Yagi, and H. Misono. 2001. Isolation of Bacillus subtilis (chungkookjang), a $poly-\gamma -polyglutamate$ producer with high genetic competence. Appl. Microbiol. Biotechnol. 57: 764- 769 https://doi.org/10.1007/s00253-001-0848-9
  7. Birrer, G. A, A. M. Cromwick, and R. A Gross. 1994. $\gamma-Poly(glutamic \ acid)$formation by Bacillus licheniformis 9945A: Physiological and biochemical studies. Inti. J. Biol. Macromol. 16: 265- 275 https://doi.org/10.1016/0141-8130(94)90032-9
  8. Cheng, H. M., A. I. Aronson, and S. C. Holt. 1973. Role of glutathione in the morphogenesis of the bacterial spore coat. J. Bacteriol. 113: 1134- 1143
  9. Choi, S. H., M. J. Oh, and W. Y. Choi. 1998. Production and application of microbial polymer, poly ($\gamma$-glutamic acid) and its hydrogel, pp. 225- 229. In: Proc. KSAM Spring Meeting
  10. Crornwick, A. M. and R. A. Gross. 1995. Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and $\gamma-poly(glutamic \ acid)$ formation. Int J. Biol. Macromol. 17: 259- 267 https://doi.org/10.1016/0141-8130(95)98153-P
  11. Green, B. D., L. Batitisti, T. M. Koehler, C. B. Thome, and B. E. Ivins. 1985. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49: 291- 297
  12. Hara, T., C. Chetanachit, and S. Ueda. 1986. Distribution of plasmids in polyglutamate-producing Bacillus strains isolated from 'natto'-like fermented soybean, 'Thua Nao', in Thailand. J. Gen. Appl. Microbiol. 32: 241- 249 https://doi.org/10.2323/jgam.32.241
  13. Hara, T., H. Saito, and S. Kaneko. 1995. Plasmid analysis in polyglutamate-producing Bacillus strain isolated from nonsalty fermented soybean food, 'kinerna', in Nepal. J. Gen. Appl. Microbiol. 41: 3- 9 https://doi.org/10.2323/jgam.41.3
  14. Hara, T., S. Nagatomo, and S. Ueda. 1992. The DNA sequence of $\gamma-glutamyltranspeptidase$ gene of Bacillus subtilis (natto) plasmid pUH1. Appl. Microbiol. Biotechnol. 37: 211-215 https://doi.org/10.1007/BF00178173
  15. Hara, T., S. Ogata, and S. Veda. 1993. Plasmid distribution in $\gamma-polyglutamate$ producing Bacillus strains isolated from 'dan-douchi', a 'natto'-like non-salty fermented soybean food in China. J. Gen. Appl. Microbiol. 39: 75- 82 https://doi.org/10.2323/jgam.39.75
  16. Hara, T. and S. Ueda. 1982. Regulation of polyglutamate production in Bacillus subtilis (natto): Transformation of high PGA productivity. Agric. Biol. Chem. 46: 2275- 2281 https://doi.org/10.1271/bbb1961.46.2275
  17. Hara, T. 1992. Gene analysis of Bacillus subtilis (natto) plasmid responsible for $\gamma-polyglutamate$ synthesis, pp. 49-57. In: Proc. of The 3rd International Joint Seminar on The Future of Agricultural Science
  18. Hara, T. 2000. Desert greening; Greening by utilization of microbial macromolecules (in Japanese). Kobunshi 49: 67-370
  19. Hezayen, F. F., B. H. A. Rehm, R. Eberhardt, and A. Steinbuchel, 2000. Polymer production by two newly isolated extremely halophilic archaea: Application of a novel corrosion-resistant bioreactor. Appl. Microbiol. Biotech. 54: 319-325 https://doi.org/10.1007/s002530000394
  20. Hoppensack, A., F. B. Opperrnnn-Sanio, and A. Steinbuche. 2003. Conversion of the nitrogen content in liquid manure into biomass and poly glutamate acid by a newly isolated strain of Bacillus licheniformis. FEMS Microbiol. Lett. 218: 39-45 https://doi.org/10.1111/j.1574-6968.2003.tb11495.x
  21. lng-Lung Shih and Yi-Tsong Van. 2001. The production of $poly-\gamma-polyglutamatic$ acid from microorganisms and its various applications. Bioresource Technol. 79: 207- 225 https://doi.org/10.1016/S0960-8524(01)00074-8
  22. Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada. 1996. Glutamic acid independent production of poly $\gamma-glutamic \ acid$ by Bacillus subtilis TAM-4. Biosci. Biotech. Biochem. 60: 1239- 1242 https://doi.org/10.1271/bbb.60.1239
  23. Jeon, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim, and B. W. Kim. Cloning and characterization of cycloinulooligosaccharide fructanotransferase (CFrase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12: 921-928
  24. Kim, J. K., J. S. Lee, S. W. Lee, Y. P. Lee, C. H. lung, H. C. Kim, and S. Y. Choi. 2002. Cloning and expression of the aminopeptidase gene from the Bacillus licheniformis in Bacillus subtilis. J. Microbiol. Biotechnol. 12: 773- 779
  25. Koltukova, N. V, A. A. Bondarchuk, I. Zakharova, T. A. Valueva, and V. V. Mosolov. 1984. Purification of Bacillus meseniericus proteolytic enzymes by affinity chromatography. Prikl. Biokhim. Mikrobiol. 20: 64- 68
  26. Kovalenko, E. A., N. V. Koltukova, and T. V. Strelchina. 1990. Characteristics of hydrolase biosynthesis in Bacillus mesentericus grown on various media. Prikl. Biokhim. Mikrobiol. 26: 528- 533
  27. Kunioka, M. 1997. Biosynthesis and chemical reactions of poly(amino acids) from microorganisms. Appl. Microbiol. Biotechnol. 47: 469- 475 https://doi.org/10.1007/s002530050958
  28. Lee, B. Y, D. M. Kim, and K. H. Kim. 1991. Physicochemical properties of viscous substance extracted from Chungkook-jang. Korean J. Food Sci. Technol. 23: 599-604
  29. Lee, M. H., J. J. Song, Y. H. Choi, S. P. Hong, E. E. Rha, H. K. Kim, S. G. Lee, H. Y Poo, S. C. Lee, Y. B. Seu, and M. H. Sung. 2003. High-level expression and secretion of Bacillus pumilus lipase B26 in Bacillus subtilis Chungkookjang. J. Microbiol. Biotechnol. 13: 892- 896
  30. Lee, S. H., T S. Seung, and C. Choi. 2000. Purification and characterization of biopolymer by Bacillus coagulans CE74. J. Korean Soc. Agric. Chem. Biotechnol. 43: 81- 85
  31. Lee, S. S., J. S. Han, I. H. Lee, Y. Y. Yang, S. K. Hong, and J. W. Suh. 2002. Stable secretion vector derived from the RCR (rolling-circle replication) plasmid of Bacillus mesentericus. J. Microbiol. 40: 140- 145
  32. Margarita Kambourova, Martin Tangency, and Fergus G. Priest. 2001. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl. Environ. Microbiol. 67: 1004-1007 https://doi.org/10.1128/AEM.67.2.1004-1007.2001
  33. Meredith, S. C. 1984. The determination of molecular weight by gel permeation chromatography in organic solvents. J. Biol. Chem. 259(19): 11682-11685
  34. Nagai, T., K. Kugpchi, and Yltoch. 1997. Chemical analysis of poly-$\gamma$-glumatic acid produced by plasmid-free Bacillus subtilis tnattov: Evidence that plasmids are not involved in $poly-\gamma-glumatic$ acid production. J. Gen. Appl. Microbiol. 43: 139- 143 https://doi.org/10.2323/jgam.43.139
  35. Ogawa, Y, D. Sugiura, and Y. Tahara. 1997. DNA sequence of Bacillus subtilis (natto) NR-1-glutamyltranspeptidase gene ggt. Biosci. Biotech. Biochem. 61: 1596- 1600 https://doi.org/10.1271/bbb.61.1596
  36. Ogawa, Y., H. Hosoyarna, and H. Motai. 1991. Purification and properties of $\gamma-glutamyltranspeptidase$ Bacillus subtilis (natto). Agric. Biol. Chem. 55: 2971-2977 https://doi.org/10.1271/bbb1961.55.2971
  37. Ozone, F., Y. Inoue, A. Shiraishi, H. Hamashima, K. Masuda, K. Shiojima, and M. Sasatsu. 2002. Purification and characterization of 3,3-dihydroxyazetidine from culture medium of Bacillus mesentericus and B. subtilis. J. Microbiol. Methods 50: 91- 95 https://doi.org/10.1016/S0167-7012(02)00022-2
  38. Perez-Camero, G., F. Congregado, Jordi J. Bou, and S. Munz-Guerra. 1999. Biosynthesis and ultrasonic degradation of bacterial $poly(\gamma -glutamic \ acid)$. Biotech. Bioeng. 63: 110- 115 https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<110::AID-BIT11>3.0.CO;2-T
  39. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463- 5467 https://doi.org/10.1073/pnas.74.12.5463
  40. Simonenko, I. A. 1989. Optimization of the nutrient medium composition for directed biosynthesis of Bacillus mesentericus lectins. Mikrobiol. Zh. 51: 3- 6
  41. Tanimoto, H., M. Mori, M. Motoki, K. Torii, M. Kadowaki, and T. Noguchi. 2001. Natto mucilage containing $poly-\gamma -glutamic$ acid increases soluble calcium in the rat small intestine. Biosci. Biotechnol. Biochem. 65: 516- 521 https://doi.org/10.1271/bbb.65.516
  42. Thome, C. B., C. G. Gomes, and R. D. Housewright. 1954. Production of glutamyl polypeptide by Bacillus subtilis. J. Bacteriol. 68: 307- 315
  43. Torii, M. 1956. Optical isomers of glutamic acid comprising bacterial glutamyl polypeptides. Med. J. Osaka Univ. 6: 1043-1046
  44. Weber, J. 1990. $poly(\gamma -glutamic \ acid)s$ are the major constituents of nematocysts in Hydra (Hydrozoa Cnidaria). J. Biol. Chem. 265: 9664- 9669
  45. Xu, K. and M. A. Strauch. 1996. Identification, sequence, and expression of the gene encoding $\gamma-glutamyltranspeptidase$ in Bacillus subtilis. J. Bacteriol. 178: 4319- 4322 https://doi.org/10.1128/jb.178.14.4319-4322.1996
  46. Yoon, S. H., J. K. Song, and J. C. Ryu. 1998. Production of biopolymer flocculant by Bacillus subtilis TBll. J. Microbiol. Biotechnol. 8: 606- 612