Doxorubicin Productivity Improvement by the Recombinant Streptomyces peucetius with High-Copy Regulatory Genes Cultured in the Optimized Media Composition

  • PARK, HEE-SEOP (School of Chemical Engineering and Biotechnology, Inha University) ;
  • KANG, SEUNG-HOON (School of Chemical Engineering and Biotechnology, Inha University) ;
  • PARK, HYUN-JOO (Song Won Envichem Inc.) ;
  • KIM, EUNG-SOO (School of Chemical Engineering and Biotechnology, Inha University)
  • Published : 2005.02.01

Abstract

Doxorubicin is a clinically important anticancer polyketide compound that is typically produced by Streptomyces peucetius var. caesius. To improve doxorubicin productivity by S. peucetius, a doxorubicin pathway-specific regulatory gene, dnrI, was cloned into a high-copy-number plasmid containing a catechol promoter system. The S. peucetius containing the recombinant plasmid exhibited approximately 9.5-fold higher doxorubicin productivity compared with the wild-type S. peucetius. The doxorubicin productivity by this recombinant S. peucetius strain was further improved through the optimization of culture media composition. Based on the Fractional Factorial Design (FFD), cornstarch, $K_2HPO_4$, and $MgSO_4$ were identified to be the key factors influencing doxorubicin productivity. The Response Surface Method (RSM) results based on 20 independent culture conditions with varying amounts of key factors predicted the highest theoretical doxorubicin productivity of 11.1 mg/l with corn starch of 46.33 g/l, $K_2HPO_4$ of 4.63 g/l, and $MgSO_4$ of 9.26 g/l. The doxorubicin productivity of the recombinant S. peucetius strain with the RSM-based optimized culture condition was experimentally verified to be 11.46 mg/l, which was approximately 30.8-fold higher productivity compared with the wild-type S. peucetius without culture media optimization.

Keywords

References

  1. Berdy, J. 1984. New ways to obtain antibiotics. Chin. J. Antibiot. 7: 272- 290
  2. Box, G. E. P., W. G. Hunter, and J. S. Hunter. 1978. Statistics for Experimenters, pp. 291- 334. John Wiley and Sons, New York, U.S.A.
  3. Chatterjee, S. and L. C. Vining. 1981. Nutrient utilization in actinomycetcs. Induction of $\alpha-glucosidases$ in Streptomyces venezualae. Can. J. Microbiol. 27: 639- 645 https://doi.org/10.1139/m81-098
  4. Cochran, W. G. and G. M. Cox. 1957. Experimental Design, 2nd Ed. pp. 346- 354. John Wiley and Sons, New York, U.S.A.
  5. Demain, A. L. 2000. Small bugs, big business: The economic power of the microbe. Biotechnol. Adv. 18: 499- 514 https://doi.org/10.1016/S0734-9750(00)00049-5
  6. Dey, G., A. Mitra, R. Banerjee, and B. R. Maiti. 2001. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7: 227- 233 https://doi.org/10.1016/S1369-703X(00)00139-X
  7. Elibol, M. and F. Mavituna. 1998. Effect of sucrose on actinorhodin production by Streptomyces coelicolor A3(2). J. Biochem. 33: 307- 311
  8. Hamseveni, D. R., S. G. Prapulla, and S. Divakar. 2001. Response surface methodological approach for the synthesis of isobutyl isobutyrate. Proc. Biochem. 36: 1103-1109 https://doi.org/10.1016/S0032-9592(01)00142-X
  9. Hopwood, D. A., K. F. Chater, J. E. Dowding, and A Vvian. 1973. Advances in Streptomyces coelicolor genetics. Bacteriol. Rev. 37: 371-405
  10. Hopwood, D. A., T. Kieser, M. J. Bibb, M. J. Buttner, and K. F. Chater. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, U.K.
  11. Hounsa, C. G., J. M. Aubry, and H. C. Dubourguier. 1996. Application of factorial and Doehlert design for optimization of pectate lyase production by a recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 45: 764- 770 https://doi.org/10.1007/s002530050760
  12. Hwang, Y. S., J. Y. Lee, E. S. Kim, and C. Y. Choi. 2001. Optimization of transformation procedure in avermectin high-producing Streptomyces avermitilis. Biotechnol. Lett. 23: 457-462 https://doi.org/10.1023/A:1010377219368
  13. Jung, W.-S., E.-S. Kim, H.-Y. Kang, C.-Y. Choi, D. H. Sherman, and Y. J. Yoon. 2003. Site-directed mutagenesis on putative macrolactone ring size determinant in the hybrid pikrornycin-tylosin polyketide synthase. J. Microbiol. Biotechnol. 13: 823- 827
  14. Kalakoutskii, L. V. and N. S. Agre. 1976. Comparative aspects of development and differentiation in actinomycetes. Bacteriol. Rev. 40: 469- 524
  15. Kim, C.-Y., H.-J. Park, and E.-S. Kim. 2003. Heterologous expression of hybrid type II polyketide synthase system in Streptomyces species. J. Microbiol. Biotechnol. 13: 819-822
  16. Kim, C.-Y., H.-J. Park, Y. J. Yoon, H.-Y. Kang, and E.-S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
  17. Myers, R. H. and D. C. Montgomery. 1995. Response Surface Methodology: Process and Product Optimization using Designed Experiments, 1st Ed. Wiley-Interscience, U.S.A.
  18. Nicholls, G., B. J. Chark, and J. E. Brown. 1992. Solid-phase extraction and optimized separation of doxorubicin, epirubicin and their metabolites using reverse-phase high performance liquid chromatography. J. Pharm. Biomed. Anal. 10: 949-957 https://doi.org/10.1016/0731-7085(91)80104-H
  19. Otten, S. L., J. Ferguson, and C. R. Hutchinson. 1995. Regulation of daunorubicin production in Streptomyces peucetius by the $dnrR_2$ locus. J. Bacteriol. 177: 1216-1224 https://doi.org/10.1128/jb.177.5.1216-1224.1995
  20. Park, H. J. and E. S. Kim. 2003. An inducible Streptomyces gene cluster involved in aromatic compound metabolism. FEMS Microbiol. Lett. 226: 151- 157 https://doi.org/10.1016/S0378-1097(03)00585-8
  21. Park, H. S., H. J. Park, Y. H. Kim, S. M. Lim, D. I. Kim, W. S. Ry, and E. S. Kim. 2003. Development of doxorubicin overproducing Streptomyces strain using protoplast regeneration. K. J. Biotech. Bioeng. 18: 289- 293
  22. Peggy, A. R., P. A. Mcann, M. A. Pentella, and B. M. Pogell. 1979. Simultaneous loss of multiple differentiated functions in aerial mycelium-negative isolates of Streptomyces. J. Bacteriol. 137: 891- 899
  23. Rao, K. J., C. H. Kim, and S. K. Rhee. 2000. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Proc. Biochem. 35: 639- 647 https://doi.org/10.1016/S0032-9592(99)00129-6
  24. Stutzman-Engwall, K. J., S. L. Otten, and C. R. Hutchinson. 1992. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J. Bacteriol. 174: 144- 154 https://doi.org/10.1128/jb.174.1.144-154.1992
  25. Vetrivel, K. S. and K. Dharmalingam. 2001. Isolation and characterization of stable mutants of Streptomyces peucetius defective in daunorubicin biosynthesis. J. Genet. 80: 31-38 https://doi.org/10.1007/BF02811416
  26. Volff, J. N. and J. Altenbuchner. 1998. Genetic instability of the Streptomyces chromosome. Mol. Microbiol. 27: 239-246 https://doi.org/10.1046/j.1365-2958.1998.00652.x