Browse > Article

Isolation and Characterization of a New ${\gamma}$-Polyglutamic Acid Producer, Bacillus mesentericus MJM1, from Korean Domestic Chungkukjang Bean Paste  

ZHAO , XIN-QING (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University)
PARK, KWAN-HYONG (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University)
JIN, YING-YU (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University)
LEE, IN HYUNG (Food and Life Science Major, School of Techno Science, Kookmin University)
YANG, YOUNG-YELL (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University)
JOO-WON SUH, (Institute of Bioscience and Biotechnology and Department of Biological Science, Myong Ji University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.1, 2005 , pp. 59-65 More about this Journal
Abstract
Poly-${\gamma}$-glutamic acid (PGA) is an unusual anionic polypeptide and has great potential as an environmentally and industrially significant biodegradable material. A new ${\gamma}$-PGA producer, Bacillus mesentericus MJM1, with high production capacity was isolated from Korean domestic Chungkuckjang bean paste. It produced ${\gamma}$-PGA at the level of 10 g/l in suitable media. The viscosities of 5% initially extracted mucin and purified ${\gamma}$-PGA solutions were 660 cps and 600 cps, respectively. The produced ${\gamma}$-PGA polymer consisted of 2,000 glutamic acid residues with even proportion of L and D types with molecular mass of about 200- 300 kDa. Bacillus mesentericus MJM1 displayed ${\gamma}$-glutamyltranspeptidase (${\gamma}$-GTP) activity that is known to play a key role in ${\gamma}$-PGA biosynthesis. The ${\gamma}$-GTP coding region was located on the plasmid of 5.8 kb. The plasmid, named pMMH1, is a rolling-circle replication (RCR) plasmid and additionally contained a replication origin and type I signal peptidase (sipP) coding region.
Keywords
${\gamma}$-PGA (poly-${\gamma}$-glutamic acid), ${\gamma}$-GTP (${\gamma}$-glutamyltranspeptidase), biopolymer, rolling-circle replication (RCR) plasmid, Bacillus mesentericus;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Hara, T., S. Nagatomo, and S. Ueda. 1992. The DNA sequence of $\gamma-glutamyltranspeptidase$ gene of Bacillus subtilis (natto) plasmid pUH1. Appl. Microbiol. Biotechnol. 37: 211-215   DOI   PUBMED
2 Hara, T. and S. Ueda. 1982. Regulation of polyglutamate production in Bacillus subtilis (natto): Transformation of high PGA productivity. Agric. Biol. Chem. 46: 2275- 2281   DOI
3 Hezayen, F. F., B. H. A. Rehm, R. Eberhardt, and A. Steinbuchel, 2000. Polymer production by two newly isolated extremely halophilic archaea: Application of a novel corrosion-resistant bioreactor. Appl. Microbiol. Biotech. 54: 319-325   DOI   ScienceOn
4 Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada. 1996. Glutamic acid independent production of poly $\gamma-glutamic \ acid$ by Bacillus subtilis TAM-4. Biosci. Biotech. Biochem. 60: 1239- 1242   DOI   ScienceOn
5 Kunioka, M. 1997. Biosynthesis and chemical reactions of poly(amino acids) from microorganisms. Appl. Microbiol. Biotechnol. 47: 469- 475   DOI   ScienceOn
6 Nagai, T., K. Kugpchi, and Yltoch. 1997. Chemical analysis of poly-$\gamma$-glumatic acid produced by plasmid-free Bacillus subtilis tnattov: Evidence that plasmids are not involved in $poly-\gamma-glumatic$ acid production. J. Gen. Appl. Microbiol. 43: 139- 143   DOI   ScienceOn
7 Weber, J. 1990. $poly(\gamma -glutamic \ acid)s$ are the major constituents of nematocysts in Hydra (Hydrozoa Cnidaria). J. Biol. Chem. 265: 9664- 9669   PUBMED
8 Ashiuchi, M., C. Nawa, T. Kamei, J. J. Song, S. P. Hong, M. H. Sung, K Soda, and H. Misono. 2001. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 268: 5321- 5328   DOI   ScienceOn
9 Birrer, G. A, A. M. Cromwick, and R. A Gross. 1994. $\gamma-Poly(glutamic \ acid)$formation by Bacillus licheniformis 9945A: Physiological and biochemical studies. Inti. J. Biol. Macromol. 16: 265- 275   DOI   ScienceOn
10 Cheng, H. M., A. I. Aronson, and S. C. Holt. 1973. Role of glutathione in the morphogenesis of the bacterial spore coat. J. Bacteriol. 113: 1134- 1143   PUBMED
11 Green, B. D., L. Batitisti, T. M. Koehler, C. B. Thome, and B. E. Ivins. 1985. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49: 291- 297   PUBMED
12 Hara, T., C. Chetanachit, and S. Ueda. 1986. Distribution of plasmids in polyglutamate-producing Bacillus strains isolated from 'natto'-like fermented soybean, 'Thua Nao', in Thailand. J. Gen. Appl. Microbiol. 32: 241- 249   DOI
13 Torii, M. 1956. Optical isomers of glutamic acid comprising bacterial glutamyl polypeptides. Med. J. Osaka Univ. 6: 1043-1046
14 Koltukova, N. V, A. A. Bondarchuk, I. Zakharova, T. A. Valueva, and V. V. Mosolov. 1984. Purification of Bacillus meseniericus proteolytic enzymes by affinity chromatography. Prikl. Biokhim. Mikrobiol. 20: 64- 68   PUBMED
15 Tanimoto, H., M. Mori, M. Motoki, K. Torii, M. Kadowaki, and T. Noguchi. 2001. Natto mucilage containing $poly-\gamma -glutamic$ acid increases soluble calcium in the rat small intestine. Biosci. Biotechnol. Biochem. 65: 516- 521   DOI   ScienceOn
16 Meredith, S. C. 1984. The determination of molecular weight by gel permeation chromatography in organic solvents. J. Biol. Chem. 259(19): 11682-11685   PUBMED
17 Ogawa, Y, D. Sugiura, and Y. Tahara. 1997. DNA sequence of Bacillus subtilis (natto) NR-1-glutamyltranspeptidase gene ggt. Biosci. Biotech. Biochem. 61: 1596- 1600   DOI   ScienceOn
18 Ashiuchi, M., K Soda, and H. Misono. 1999. A poly-yglutamate synthetic system of Bacillus subtilis IFO 3336: Gene cloning and biochemical analysis. Biochem. Biophy. Res. Comm. 263: 6- 12   DOI   PUBMED   ScienceOn
19 Crornwick, A. M. and R. A. Gross. 1995. Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and $\gamma-poly(glutamic \ acid)$ formation. Int J. Biol. Macromol. 17: 259- 267   DOI   ScienceOn
20 Lee, B. Y, D. M. Kim, and K. H. Kim. 1991. Physicochemical properties of viscous substance extracted from Chungkook-jang. Korean J. Food Sci. Technol. 23: 599-604
21 Lee, S. S., J. S. Han, I. H. Lee, Y. Y. Yang, S. K. Hong, and J. W. Suh. 2002. Stable secretion vector derived from the RCR (rolling-circle replication) plasmid of Bacillus mesentericus. J. Microbiol. 40: 140- 145   과학기술학회마을
22 Ashiuchi, M. and H. Misono. 2002. Biochemistry and molecular genetics of $poly-\gamma -glutamate$ synthesis. Appl. Microbiol. Biotech. 59: 9- 14   DOI   ScienceOn
23 Jeon, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim, and B. W. Kim. Cloning and characterization of cycloinulooligosaccharide fructanotransferase (CFrase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12: 921-928   과학기술학회마을
24 Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463- 5467   DOI   ScienceOn
25 Ogawa, Y., H. Hosoyarna, and H. Motai. 1991. Purification and properties of $\gamma-glutamyltranspeptidase$ Bacillus subtilis (natto). Agric. Biol. Chem. 55: 2971-2977   DOI   PUBMED   ScienceOn
26 Xu, K. and M. A. Strauch. 1996. Identification, sequence, and expression of the gene encoding $\gamma-glutamyltranspeptidase$ in Bacillus subtilis. J. Bacteriol. 178: 4319- 4322   DOI   PUBMED
27 Choi, S. H., M. J. Oh, and W. Y. Choi. 1998. Production and application of microbial polymer, poly ($\gamma$-glutamic acid) and its hydrogel, pp. 225- 229. In: Proc. KSAM Spring Meeting
28 Margarita Kambourova, Martin Tangency, and Fergus G. Priest. 2001. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl. Environ. Microbiol. 67: 1004-1007   DOI   ScienceOn
29 Ozone, F., Y. Inoue, A. Shiraishi, H. Hamashima, K. Masuda, K. Shiojima, and M. Sasatsu. 2002. Purification and characterization of 3,3-dihydroxyazetidine from culture medium of Bacillus mesentericus and B. subtilis. J. Microbiol. Methods 50: 91- 95   DOI   ScienceOn
30 Kim, J. K., J. S. Lee, S. W. Lee, Y. P. Lee, C. H. lung, H. C. Kim, and S. Y. Choi. 2002. Cloning and expression of the aminopeptidase gene from the Bacillus licheniformis in Bacillus subtilis. J. Microbiol. Biotechnol. 12: 773- 779
31 Yoon, S. H., J. K. Song, and J. C. Ryu. 1998. Production of biopolymer flocculant by Bacillus subtilis TBll. J. Microbiol. Biotechnol. 8: 606- 612
32 Perez-Camero, G., F. Congregado, Jordi J. Bou, and S. Munz-Guerra. 1999. Biosynthesis and ultrasonic degradation of bacterial $poly(\gamma -glutamic \ acid)$. Biotech. Bioeng. 63: 110- 115   DOI   ScienceOn
33 Hara, T., H. Saito, and S. Kaneko. 1995. Plasmid analysis in polyglutamate-producing Bacillus strain isolated from nonsalty fermented soybean food, 'kinerna', in Nepal. J. Gen. Appl. Microbiol. 41: 3- 9   DOI   ScienceOn
34 Lee, S. H., T S. Seung, and C. Choi. 2000. Purification and characterization of biopolymer by Bacillus coagulans CE74. J. Korean Soc. Agric. Chem. Biotechnol. 43: 81- 85
35 Accaoui, M. J., M. Enoju, and A Visvikis. 2000. $\gamma-Glutamyltranspeptidase-dependent$ glutathione catabolism results in activation of $NF-\kappaB$. Bioch. Biophy. Res. Comm. 276: 1062- 1067   DOI   ScienceOn
36 lng-Lung Shih and Yi-Tsong Van. 2001. The production of $poly-\gamma-polyglutamatic$ acid from microorganisms and its various applications. Bioresource Technol. 79: 207- 225   DOI   ScienceOn
37 Hara, T., S. Ogata, and S. Veda. 1993. Plasmid distribution in $\gamma-polyglutamate$ producing Bacillus strains isolated from 'dan-douchi', a 'natto'-like non-salty fermented soybean food in China. J. Gen. Appl. Microbiol. 39: 75- 82   DOI   ScienceOn
38 Hara, T. 1992. Gene analysis of Bacillus subtilis (natto) plasmid responsible for $\gamma-polyglutamate$ synthesis, pp. 49-57. In: Proc. of The 3rd International Joint Seminar on The Future of Agricultural Science
39 Hara, T. 2000. Desert greening; Greening by utilization of microbial macromolecules (in Japanese). Kobunshi 49: 67-370
40 Kovalenko, E. A., N. V. Koltukova, and T. V. Strelchina. 1990. Characteristics of hydrolase biosynthesis in Bacillus mesentericus grown on various media. Prikl. Biokhim. Mikrobiol. 26: 528- 533
41 Hoppensack, A., F. B. Opperrnnn-Sanio, and A. Steinbuche. 2003. Conversion of the nitrogen content in liquid manure into biomass and poly glutamate acid by a newly isolated strain of Bacillus licheniformis. FEMS Microbiol. Lett. 218: 39-45   DOI   ScienceOn
42 Abe, K., Y. Ito, and Y. Asada. 1997. Purification and properties of two isozymes of $\gamma-glutamyltranspeptidase$ from Bacillus subtilis TAM-4. Biosci. Biotech. Biochem. 61: 1621-1625   DOI   ScienceOn
43 Simonenko, I. A. 1989. Optimization of the nutrient medium composition for directed biosynthesis of Bacillus mesentericus lectins. Mikrobiol. Zh. 51: 3- 6   PUBMED
44 Ashiuchi, M., T. Kamei, D. H. Baek, S. Y. Shin, M. H. Sung, K Soda, T. Yagi, and H. Misono. 2001. Isolation of Bacillus subtilis (chungkookjang), a $poly-\gamma -polyglutamate$ producer with high genetic competence. Appl. Microbiol. Biotechnol. 57: 764- 769   DOI   ScienceOn
45 Lee, M. H., J. J. Song, Y. H. Choi, S. P. Hong, E. E. Rha, H. K. Kim, S. G. Lee, H. Y Poo, S. C. Lee, Y. B. Seu, and M. H. Sung. 2003. High-level expression and secretion of Bacillus pumilus lipase B26 in Bacillus subtilis Chungkookjang. J. Microbiol. Biotechnol. 13: 892- 896   과학기술학회마을
46 Thome, C. B., C. G. Gomes, and R. D. Housewright. 1954. Production of glutamyl polypeptide by Bacillus subtilis. J. Bacteriol. 68: 307- 315