Laccase를 이용한 Triclosan의 처리

Oxidative Transformation of Triclosan by Laccase

  • 김영진 (맥길대학교 토목공학과)
  • Kim, Young-Jin (Department of Civil Engineering and Applied Mechanics, McGill University)
  • 발행 : 2005.03.01

초록

The oxidative transformation of triclosan with laccase from Trametes versicolor was conducted in a closed, temperature controlled system containing phosphate buffer for pH control. The optimum pH for triclosan transformation showed about 5. Despite the observation that elevated temperatures tended to inactivate the enzyme, increased transformation of triclosan was observed up to $50^{\circ}C$. Of the mediators studied, ABTS was most successful at enhancing triclosan transformation. About 80% of the toxicity of the initial mixture was reduced after the enzymatic treatment. In the presence of 1.0 mM of anions such as sulfite, sulfide, and cyanide, triclosan transformation was greatly inhibited. Chloride and fluoride ions exhibited inhibition of triclosan transformation at 25 mM. Ferric ion substantially inhibited triclosan transformation at 1.0 mM.

키워드

참고문헌

  1. Motoda, S. : Purification and Characterization of Polyphenol Oxidase from Trametes sp. MS39401. J. Bios. Bioen., 87(2), 137-143, 1999 https://doi.org/10.1016/S1389-1723(99)89002-1
  2. Johannes, C. and Majcherczyk, A. : Natural Mediators in the oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems. Appl. Environ. Microbiol., 66(2), 524-528, 2000 https://doi.org/10.1128/AEM.66.2.524-528.2000
  3. Gianfreda, L., Sannio, F., Rao, M. A. and Bollag, J.-M. : Oxidative transformation of phenols in aqueous mixtures. Water Res., 37, 3205-3215, 2003 https://doi.org/10.1016/S0043-1354(03)00154-4
  4. Bhargava, H. N. and Leonard B. S. : Triclosan : Applications and safety. Am. J. Infect. Control., 24, 209-218, 1996 https://doi.org/10.1016/S0196-6553(96)90017-6
  5. Adolfsson-Erici, M., Pettersson, M., Parkkonen, J. and Sturve, J. : Triclosan a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere, 46, 1485-1489, 2002 https://doi.org/10.1016/S0045-6535(01)00255-7
  6. Sabaliunas, D., Webb, S. E, Hauk, A., Jacob, M. and Eckhoff., W. S. : Environmental fate of Triclosan in the River Aire Basin, UK. Water Res., 37, 3145-3154, 2003 https://doi.org/10.1016/S0043-1354(03)00164-7
  7. Boyd, G. R., Reemtsma, H., Grimm, D. A. and Mitra, S. : Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci. Total Environ., 311(13), 135-149, 2003 https://doi.org/10.1016/S0048-9697(03)00138-4
  8. Wind, T., Werner, U., Jacob, M. and Hauk, A. : Environmental concentrations of boron, LAS, EDTA, NTA and Triclosan simulated with GREAT-ER in the river Itter. Chemosphere, 54(8), 1145-1154, 2004 https://doi.org/10.1016/j.chemosphere.2003.09.036
  9. Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y. and Arizono, K. : Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicol., 67(2), 167-179, 2004 https://doi.org/10.1016/j.aquatox.2003.12.005
  10. Braoudaki, M. and Hilton, A. C. : Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J. Clin. Microbiol., 42, 73-78, 2004 https://doi.org/10.1128/JCM.42.1.73-78.2004
  11. Foran, C. M., Bennett, E. R. and Benson, W. H. : Developmental evaluation of a potential non-steroi-dal estrogen: triclosan. Mar. Environ. Res., 50, 153-156, 2000 https://doi.org/10.1016/S0141-1136(00)00080-5
  12. Mezcua, M., Gomez, M. J., Ferrer, I., Aguera, A., Hernando, M. D. and Fernandez-Alba, A. R. : Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples. Anal. Chim. Acta, 524(1-2), 241-247, 2004 https://doi.org/10.1016/j.aca.2004.05.050
  13. Wolfenden, B. S. and Wilson, R. L. : Radical cations as reference chromogens in kinetic studies of one-electron transfer reactions: pulse radiolysis of 2,2-azi-nobis-(3-ethylbenz-thiazoline-6-sulphonate). J. Chem. Perkin. Trans., 2, 805-812, 1982
  14. Kim, Y. J. : Reaction Conditions for Laccase Catalyzed Degradation of Bisphenol A. Kor. J. Env. Hlth., 30(2), 79-83, 2004
  15. Chan, H. C., Holland, R. D., Bumpus, J. A., Churchwell, M. I. and Doerge, D. R. : Inactivation of Coprinus cine reus peroxidase by 4-chloroaniline during turnover: comparison with horseradish peroxidase and bovine lactoperoxidase. Chem. Biol. Inter., 123, 197-217, 1999 https://doi.org/10.1016/S0009-2797(99)00136-2
  16. Yaver, D. S., Xu, E, Golightly, E. J., Brown, K. M., Rey, M. W., Schneider, P., Halkier, T., Mondorf, K. and Dalboge, H. : Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl. Environ. Microbial., 62, 834-841, 1996
  17. Kim, Y. J. : Impact of Dissolved Wastewater constituents on Laccase-Catalyzed Treatment of Bisphenol A. Kor. J. Env. Hlth., 30(2), 161-166, 2004
  18. Ragusa, S., Cambria, M. T., Pierfederici, E, Scire, A., Bertoli, E., Tanfani, F. and Cambria, A. : Structure-activity relationship on fungal laccase from Rigidoporus lignosus: A Fourier-transform infrared spectroscopic study. Biochim. Biophys. Acta, 1601, 155-162. 2002 https://doi.org/10.1016/S1570-9639(02)00469-7
  19. Baldrian, P. : Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol., 32(1), 78-91, 2002 https://doi.org/10.1016/S0141-0229(02)00245-4
  20. Ryan, S., Schnitzhofer, W., Tzanov, T., Cavaco-Paulo, A. and Gubitz, G. M. : An acid-stable laccase from Sclerotium rolfsii with potential for wool dye deco-lourization. Enzyme Mierob. Technol., 33, 766-774, 2003 https://doi.org/10.1016/S0141-0229(03)00162-5
  21. Hofer, C. and Schlosser, D. : Novel enzymatic oxidation of $Mn2^+$ to $Mn3^+$ catalyzed by a fungal laccase. FEBS Letters, 451, 186-190, 1999 https://doi.org/10.1016/S0014-5793(99)00566-9