Novel Process of Precision Nickel Mesh Fabrication for EMI Shielding Using Continuous Electroforming Technique

연속전주공정을 이용한 전자파 차폐용 정밀니켈메쉬 제조 신공정

  • Lee Joo-Yul (Surface Technology Research Center, Korea Institute of Machinery & Materials) ;
  • Kim Man (Surface Technology Research Center, Korea Institute of Machinery & Materials) ;
  • Kwon Sik-Chol (Surface Technology Research Center, Korea Institute of Machinery & Materials) ;
  • Hue Nguyen Viet (Surface Technology Research Center, Korea Institute of Machinery & Materials) ;
  • Kim In-gon (Department of Materials and metallurgical Engineering, Dong-eui University)
  • 이주열 (한국기계연구원 표면기술연구센터) ;
  • 김만 (한국기계연구원 표면기술연구센터) ;
  • 권식철 (한국기계연구원 표면기술연구센터) ;
  • ;
  • 김인곤 (동의대학교 재료금속공학과)
  • Published : 2005.12.01

Abstract

Novel continuous electroforming process equipped with a rotating patterned mandrel, soluble/insoluble anode and multiple stage of rolling wheels was proposed to produce precision nickel mesh, which is known as a very efficient electromagnetic interference (EMI) shielding material. Continuously electroformed nickel deposits showed a tendency to form small-sized particles as the plating solution temperature increased and mandrel rotation speeded up and the applied current density decreased. Along the honeycomb patterns of mandrel, nickel was accurately electrodeposited on the surface of rotating mandrel, but quite different visual/structural characteristics were measured on both sides.

Keywords

References

  1. L. Li, DDL Chung, Polym. Compos., 14 (1993) 467 https://doi.org/10.1002/pc.750140604
  2. X. Shui, DDL Chung, J. Electron Mater., 26 (1997) 928 https://doi.org/10.1007/s11664-997-0276-4
  3. DDL Chung, Carbon, 39 (2001) 279 https://doi.org/10.1016/S0008-6223(00)00184-6
  4. T. Kagotani, R. Kobayashi, S. Sugimoto, K. Inomata, K. Okayama, J. Akedo, J. Magnetism & Magnetic Mater., 290 (2005) 1442 https://doi.org/10.1016/j.jmmm.2004.11.543
  5. L. Li, DDL Chung, Composites, 25 (1994) 215 https://doi.org/10.1016/0010-4361(94)90019-1
  6. W. M. Kim, D. Y. Ku, I. K. Lee, Y. W Seo, B. K. Cheong, T. S. Lee, I. H. Kim, K. S. Lee, Thin Solid Films, 473 (2005) 315 https://doi.org/10.1016/j.tsf.2004.08.083
  7. Y. K. Hong, C. Y. Lee, C. K. Jeong, J. H. Sim, K. Kim, J. Joo, M. S. Kim, J. Y. Lee, S. H. Jeong, S. W Byun, Curr. Appl. Phys., 1 (2001) 439 https://doi.org/10.1016/S1567-1739(01)00054-2
  8. J. Wu, DDL Chung, Carbon, 40 (2002) 445 https://doi.org/10.1016/S0008-6223(01)00133-6
  9. C.-Y. Huang, W-W Mo, M.-L. Roan, Surf. Coat. Tech., 184 (2004) 163 https://doi.org/10.1016/j.surfcoat.2003.11.010
  10. I. Kim, K. Kang, J. Lee, S. C. Kwon, M. Kim, J. Y. Lee, J. Kor, Inst. Surf. Eng., 38, (2005) 14
  11. J.-Y. Lee, J.-W. Kim, B.-Y. Chang, H. T. Kim, S.-M. Park, J. Electrochem. Soc., 151 (2004) C333 https://doi.org/10.1149/1.1690289
  12. A. E. W Rennie, C. E. Bocking, G. R. Bennett, J. Mater. Process. Tech., 110 (2001) 186 https://doi.org/10.1016/S0924-0136(00)00878-5
  13. H. Yang, S.-W. Kang, International J. Machine Tools & Manufacture, 40 (2000) 1065 https://doi.org/10.1016/S0890-6955(99)00107-8