An Antimicrobial Activity of a Peptidic Molecule from the Centipede, Scolopendra subspinipes mutilans L. Koch

  • 발행 : 2005.12.01

초록

An antimicrobial molecule was purified from centipede, Scolopendra subspinipes mutilans L. Koch, by reverse phase-HPLC. Its molecular weight was determined to be 1208.5493 by using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Total amino acid composition analysis revealed that it consists of E, G, P, V, L, F, and W. It exhibited a broad antimicrobial spectrum against not only Gram-negative, but also Gram-positive bacteria. Furthermore, it was found to have an antimicrobial activity against vancomycin resistant enterococci (VRE). It may be a useful molecule for a new antibiotic development, especially against drug-resistant bacteria. We suggest that it may playa role in the defense system of this animal. This is the first report of a peptidic antimicrobial substance from centipede.

키워드

참고문헌

  1. Andreu, D. and Rivas, L. (1998). Animal antimicrobial peptide: An overview. Biopolymers 55, 415-433
  2. Arthur, M., Reynolds, P. and Courvalin, P. (1996). Glycopeptide resistance in enterococci. Trends Microbiol. 4,401-407 https://doi.org/10.1016/0966-842X(96)10063-9
  3. Boman, H. G., Nilsson,I. and Rasmuson, B. (1972). Inducible antibacterial defense system in Drosophila. Nature 237(5352), 232-235 https://doi.org/10.1038/237232a0
  4. Boman, H. G. and Hultmark, D. (1987). Cell-free immunity in insects. Annu. Rev. Microbiol. 41, 103-126 https://doi.org/10.1146/annurev.mi.41.100187.000535
  5. Boman, H. G (1995). Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92 https://doi.org/10.1146/annurev.iy.13.040195.000425
  6. Edmond, M. B., Ober, J. F, Weinbaum, D. L., Pfaller, M. A, Hwang, T, Sanford, M. D., et al. (1995). Vancomycin-resistant Enterococcus faecium bacteremia: risk factors for infection. Clin Infect Dis. 20, 1126-1133 https://doi.org/10.1093/clinids/20.5.1126
  7. Emori, T G, and Gaynes, R. P (1993). An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev. 6, 428-442 https://doi.org/10.1128/CMR.6.4.428
  8. Ganz, T, and Lehrer, R. I. (1999). Antibiotic peptides from higher eukaryotes: biology and applications. Mol. Med. Today 5, 292-297 https://doi.org/10.1016/S1357-4310(99)01490-2
  9. Gomes, A, Datta, A, Sarangi, B., Kar, P. K and Lahiri, S. C. (1983). Isolation, purification & pharmacodynamics of a toxin from the venom of the centipede Scolopendra subspinipes dehaani Brandt. Indian J. Exp. Biol. 21(4), 203-207
  10. Gonzales, R.D., Schreckenberger, P. C, Graham, M. B., Kelkar, S., DenBesten, K, and Quinn, J. P (2001). Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357, I 179 https://doi.org/10.1016/S0140-6736(00)04376-2
  11. Hancock, R. E. W. and Chapple, D. S. (1999). Peptide antibiotics. Antimicrob. Agents Chemother. 43, 1317-1323
  12. Hancock, R. E. W. and Diamond, G. (2000). The role of cationic antimicrobial peptides in innate host defenses. Trends Microbioi. 8, 402-410 https://doi.org/10.1016/S0966-842X(00)01823-0
  13. Hijikata, M., Kobayashi, A, Leem, J. Y, Fukazawa, H., Uehara, Y and Natori, S. (1997). Inhibition of protein tyrosine kinase by 5-S-GAD, a novel antibacterial substance from an insect. Biochem. Biophys. Res. Commun. 237, 423-426 https://doi.org/10.1006/bbrc.1997.7110
  14. Kanai, A and Natori, S. (1989). Cloning of gene cluster for sarcotoxin I, antibacterial proteins of Sarcophaga peregrina. FEBS Lett. 258(2), 199-202 https://doi.org/10.1016/0014-5793(89)81652-7
  15. Kim K, Kim H., Park K and Cho K, Structural characterization of a new antibiotic substance purified from Scolopendra subspinipes mutilans L. Koch (1998). J. Kor. Chem. Soc. 42, 236239
  16. Kobayashi, A., Matsui, M., Kubo, T and Natori, S. (1993). Purification and characterization of a 59-kilodalton protein that specifically binds to NF-kappa B-binding motifs of the defense protein genes of Sarcophaga peregrina (the flesh fly). Mol. Cell. Biol. 13, 4049-4056 https://doi.org/10.1128/MCB.13.7.4049
  17. Kylsten, P, Samakovilis, C. and Hultmark, D. (1990). The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J. 9, 217-224
  18. Leem, J. Y, Nishimura, C., Kurata, S., Shimada, I., Kobayashi, A and Natori, S. (1996). Purification and characterization of N-beta-alanyl- 5-S-glutathionyl- 3,4-dihydroxyphenyl- alanine, a novel antibacterial substance of Sarcophaga peregrina (flesh fly). J. BioI. Chem. 271, 13573-13577 https://doi.org/10.1074/jbc.271.23.13573
  19. Leem, J. Y, Park, H. Y, Fukazawa, H., Uehara, Y and Natori, S. (1998). Inhibitory effects of 5-S-GAD on phosphorylation of V-SRC and BCR-ABL tyrosine kinase. BioI. Pharm. Bull. 21, 784-785 https://doi.org/10.1248/bpb.21.784
  20. Lehrer, R. J. and Ganz, T. (1999). Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11, 23-27 https://doi.org/10.1016/S0952-7915(99)80005-3
  21. Linden, P. K, Pasculle, A. W., Manez, R, Kramer, D. J., Fung, J. J., Pinna, A D., et al. (1996). Differences in outcomes for patients with bacteremia due to vancomycin-resistant Enterococcus faecium or vancomycin susceptible E. faecium. Clin Infect Dis. 22, 663-670 https://doi.org/10.1093/clinids/22.4.663
  22. Mohamed, A. H., Abu-Sinna, G, El-Shabaka, H. A and Abd, EiAal, A (1980). Effects of an extract from the centipede Scol- opendra moristans on intestine, uterus and heart contractions and on blood glucose and liver and muscle glycogen levels. Toxicon. 18(5-6),581-589 https://doi.org/10.1016/0041-0101(80)90085-9
  23. Mohamed, A. H., Zaid, E., EI-Beith, N. M, and Abd, Ei-Aal, A. (1983). Proteins, lipids, lipoproteins and some enzyme characterizations of the venom extract from the centipede Scolopendra morsitans. Toxicon. 21(3), 371-377 https://doi.org/10.1016/0041-0101(83)90093-4
  24. Schaberg, D. R., Culver, D. H. and Gaynes, R. P. (1991). Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91, 72S-75S
  25. Murray, B. E. (1990). The life and times of the enterococcus. Clin Microbiol Rev. 3, 46-65 https://doi.org/10.1128/CMR.3.1.46
  26. Natori, S. (1994). Defense molecules in host defense and development of insects. Molecular Biology Intelligence Unit, R.G Landes, Austin. 67-73
  27. Oren, Z. and Shai, Y. (1998). Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47, 451-463 https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
  28. Pharmacopoeia Commission of the Ministry of Public Health, P. R. China. (1995). A Coloured Atlas of the Chinese Materia Medica Specified in Pharmacopoeia of the People's Republic of China. Guangdong science & technology press. 461-462
  29. Quale, J., Landman, D., Atwood, E., Kreiswirth, B., Willey, B. M., Ditore, V., et al. (1996). Experience with a hospital-wide outbreak of vancomycin resistant enterococci. Am. J. Infect. Control. 24, 372-379 https://doi.org/10.1016/S0196-6553(96)90025-5
  30. Roghmann, M-C., Qaiyumi, S., Johnson, J. A., Schwalbe, R. and Morris, J. G Jr. (1997). Recurrent vancomycin-resistant Enterococcus faecium bacteremia in a leukemia patient who was persistently colonized with vancomycin-resistant enterococci for two years. Clin. Infect. Dis. 24, 514-515 https://doi.org/10.1093/clinids/24.3.514
  31. Sun, S.C. and Faye, I. (1992). Cecropia immunoresponsive factor, an insect immunoresponsive factor with DNA-binding properties similar to nuclear-factor kappa B. Eur. J. Biochem. 204, 885-892 https://doi.org/10.1111/j.1432-1033.1992.tb16708.x
  32. Tsiodras, S., Gold, H. S., Sakoulas, G., Eliopoulos, G. M., Wennersten, C; Venkataraman, L. et al. (2001). Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet 358,207-208 https://doi.org/10.1016/S0140-6736(01)05410-1
  33. Tossi, A., Sandri, L., and Giangaspero, A. (2000). Amphipathic, a-helical antimicrobial peptides. Biopolymers 55, 4-30 https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
  34. Zasloff, M. (1992). Antibiotic peptides as mediators of innate immunity. Curr. Opin. Immunol. 4,3-7 https://doi.org/10.1016/0952-7915(92)90115-U
  35. Zasloff M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415(6870), 389-395 https://doi.org/10.1038/415389a