Profiling Pyocins and Competitive Growth Advantages of Various Pseudomonas aeruginosa Strains

  • Heo YUN-JEONG (Department of Life Science, Sogang University) ;
  • KO KWAN SOO (Asian-Pacific Research Foundation for Infectious Diseases and Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • SONG JAE-HOON (Asian-Pacific Research Foundation for Infectious Diseases and Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • CHO YOU-HEE (Department of Life Science, Sogang University)
  • Published : 2005.12.01

Abstract

Pseudomonas aeruginosa produces a variety of bacteriocidal substances including pyocins that are active against the same species, but their physiological roles are relatively unknown. Here, we profiled the bacteriocidal activities in the culture supernatants of various P. aeruginosa isolates and describe the competitive growth advantages of strains PAO1 and PA14 over some strains including PAK, which are sensitive to their bacteriocidal activities. These findings suggest that the factors governing the production of pyocins and the resistance to them play important roles in controlling P. aeruginosa populations in its local environments.

Keywords

References

  1. Daw, M. A. and F. R. Falkiner. 1997. Bacteriocins: Nature, function and structure. Micron 27: 467-479 https://doi.org/10.1016/S0968-4328(96)00028-5
  2. Deziel, E., F. Lepine, S. Milot, J. He, M. N. Mindrinos, R. G. Tompkins, and L. G. Rahme. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101: 1339-1344
  3. Govan, J. R. and V. Deretic. 2000. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539-574
  4. He, J., R. L. Baldini, E. Deziel, M. Saucier, Q. Zhang, N. T. Liberati, D. Lee, J. Urbach, H. M. Goodman, and L. G. Rahme. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. USA 101: 2530-2535
  5. Hoang, T. T., A. J. Kutchma, A. Becher, and H. P. Schweizer. 2000. Integration-proficient plasmids for Pseudomonas aeruginosa: Site-specific integration and use for engineering of reporter and expression strains. Plasmid 43: 59-72 https://doi.org/10.1006/plas.1999.1441
  6. Hodgson, D. A. 1989. Bacterial diversity: The range of interesting things that bacteria do, pp. 3-21. In D. A. Hopwood and K. F. Chater (eds.), Genetics of Bacterial Diversity. Academic Press, London, U.K
  7. Ishii, S. I., Y. Nishi, and F. Egami. 1965. The fine structure of a pyocin. J. Mol. Biol. 13: 428-431 https://doi.org/10.1016/S0022-2836(65)80107-3
  8. Kerr, B., M. A. Riley, M. W. Feldman, and B. J. M. Bohannan. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418: 171-174 https://doi.org/10.1038/nature00823
  9. Kirkup, B. C. and M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428: 412-414 https://doi.org/10.1038/nature02429
  10. Lau, G. W., D. J. Hassett, H. Ran, and F. Kong. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10: 599-606 https://doi.org/10.1016/j.molmed.2004.10.002
  11. Lau, G. W., B. C. Goumnerov, C. L. Walendziewicz, J. Hewitson, W. Xiao, S. Mahajan-Miklos, R. G. Tompkins, L. A. Perkins, and L. G. Rahme. 2003. The Drosophila melanogaster Toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun. 71: 4059-4066 https://doi.org/10.1128/IAI.71.7.4059-4066.2003
  12. Lee, J.-S., Y.-J. Heo, J. K. Lee, and Y.-H. Cho. 2005. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399- 4403 https://doi.org/10.1128/IAI.73.7.4399-4403.2005
  13. Lepine, F., E. Deziel, S. Milot, and L. G. Rahme. 2003. A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim. Biophys. Acta 1622: 36-41 https://doi.org/10.1016/S0304-4165(03)00103-X
  14. Matsui, H., Y. Sano, H. Ishihara, and T. Shinomiya. 1993. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J. Bacteriol. 175: 1257-1263 https://doi.org/10.1128/jb.175.5.1257-1263.1993
  15. Michel-Briand, Y. and C. Baysse. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie 84: 499-510 https://doi.org/10.1016/S0300-9084(02)01422-0
  16. Montgomery, K. T., G. Grills, L. Li, W. A. Brown, J. Decker, R. Elliot, L. J. Gendal, K. Osborn, A. Perera, C. Xi, P. Juels, D. Lee, N. T. Liberati, J. He, S. Miyata, L. G. Rahme, M. Saucier, J. M. Urbach, F. M. Ausubel, and R. Kucherlapati. 2002. Pseudomonas aeruginosa strain UCBPP-PA14 whole genome shotgun sequencing project. Direct submission. Accession numbers AABQ07000000-AABQ07000005 [Online.] http://www.ncbi.nlm.nih.gov
  17. Nakayama, K., K. Takashima, H. Ishihara, T. Shinomiya, M. Kageyama, S. Kanaya, M. Ohnishi, T. Murata, H. Mori, and T. Hayashi. 2000. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38: 213-231 https://doi.org/10.1046/j.1365-2958.2000.02135.x
  18. Nakayama, K., S. Kanaya, M. Ohnishi, Y. Terawaki, and T. Hayashi. 1999. The complete nucleotide sequence of phage CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: Implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31: 399- 419 https://doi.org/10.1046/j.1365-2958.1999.01158.x
  19. Parret, A. H. and R. De Mot. 2002. Bacteria killing their own kind: Novel bacteriocins of Pseudomonas and other gammaproteobacteria. Trends Microbiol. 10: 107-112 https://doi.org/10.1016/S0966-842X(02)02307-7
  20. Quinn, J. P. 1998. Clinical problems posed by multiresistant nonfermenting gram-negative pathogens. Clin. Infect. Dis. 27: S117-S124 https://doi.org/10.1086/514912
  21. Rahme, L. G., E. J. Stevens, S. F. Wolfort, J. Shao, R. G. Tompkins, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902 https://doi.org/10.1126/science.7604262
  22. Rahme, L. G., F. M. Ausubel, H. Cao, E. Drenkard, B. C. Goumnerov, G. W. Lau, S. Mahajan-Miklos, J. Plotnikova, M. W. Tan, J. Tsongalis, C. L. Walendziewicz, and R. G. Tompkins. 2000. Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA 97: 8815-8821
  23. Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 56: 117- 137 https://doi.org/10.1146/annurev.micro.56.012302.161024
  24. Shinomiya, T., S. Shiga, and M. Kageyama. 1983. Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. I. Localization of the pyocin R2 gene cluster between trpCD and trpE genes. Mol. Gen. Genet. 189: 373-381
  25. Shinomiya, T., M. Osumi, and M. Kageyama. 1975. Defective pyocin particles produced by some mutant strains of Pseudomonas aeruginosa. J. Bacteriol. 124: 1508-1521
  26. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959-964 https://doi.org/10.1038/35023079
  27. Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 8484-8489