Browse > Article

Profiling Pyocins and Competitive Growth Advantages of Various Pseudomonas aeruginosa Strains  

Heo YUN-JEONG (Department of Life Science, Sogang University)
KO KWAN SOO (Asian-Pacific Research Foundation for Infectious Diseases and Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine)
SONG JAE-HOON (Asian-Pacific Research Foundation for Infectious Diseases and Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine)
CHO YOU-HEE (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1368-1376 More about this Journal
Abstract
Pseudomonas aeruginosa produces a variety of bacteriocidal substances including pyocins that are active against the same species, but their physiological roles are relatively unknown. Here, we profiled the bacteriocidal activities in the culture supernatants of various P. aeruginosa isolates and describe the competitive growth advantages of strains PAO1 and PA14 over some strains including PAK, which are sensitive to their bacteriocidal activities. These findings suggest that the factors governing the production of pyocins and the resistance to them play important roles in controlling P. aeruginosa populations in its local environments.
Keywords
Bacteriocins; pyocins; Pseudomonas aeruginosa; killing; competition;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Lau, G. W., D. J. Hassett, H. Ran, and F. Kong. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med. 10: 599-606   DOI   ScienceOn
2 Lepine, F., E. Deziel, S. Milot, and L. G. Rahme. 2003. A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim. Biophys. Acta 1622: 36-41   DOI   ScienceOn
3 Matsui, H., Y. Sano, H. Ishihara, and T. Shinomiya. 1993. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J. Bacteriol. 175: 1257-1263   DOI
4 Rahme, L. G., F. M. Ausubel, H. Cao, E. Drenkard, B. C. Goumnerov, G. W. Lau, S. Mahajan-Miklos, J. Plotnikova, M. W. Tan, J. Tsongalis, C. L. Walendziewicz, and R. G. Tompkins. 2000. Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA 97: 8815-8821
5 Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 56: 117- 137   DOI   ScienceOn
6 Michel-Briand, Y. and C. Baysse. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie 84: 499-510   DOI   ScienceOn
7 He, J., R. L. Baldini, E. Deziel, M. Saucier, Q. Zhang, N. T. Liberati, D. Lee, J. Urbach, H. M. Goodman, and L. G. Rahme. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. USA 101: 2530-2535
8 Kirkup, B. C. and M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428: 412-414   DOI   ScienceOn
9 Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959-964   DOI   ScienceOn
10 Rahme, L. G., E. J. Stevens, S. F. Wolfort, J. Shao, R. G. Tompkins, and F. M. Ausubel. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902   DOI   PUBMED
11 Lee, J.-S., Y.-J. Heo, J. K. Lee, and Y.-H. Cho. 2005. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73: 4399- 4403   DOI   ScienceOn
12 Shinomiya, T., S. Shiga, and M. Kageyama. 1983. Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. I. Localization of the pyocin R2 gene cluster between trpCD and trpE genes. Mol. Gen. Genet. 189: 373-381
13 Govan, J. R. and V. Deretic. 2000. Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60: 539-574
14 Quinn, J. P. 1998. Clinical problems posed by multiresistant nonfermenting gram-negative pathogens. Clin. Infect. Dis. 27: S117-S124   DOI   ScienceOn
15 Shinomiya, T., M. Osumi, and M. Kageyama. 1975. Defective pyocin particles produced by some mutant strains of Pseudomonas aeruginosa. J. Bacteriol. 124: 1508-1521
16 Deziel, E., F. Lepine, S. Milot, J. He, M. N. Mindrinos, R. G. Tompkins, and L. G. Rahme. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101: 1339-1344
17 Nakayama, K., K. Takashima, H. Ishihara, T. Shinomiya, M. Kageyama, S. Kanaya, M. Ohnishi, T. Murata, H. Mori, and T. Hayashi. 2000. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38: 213-231   DOI   ScienceOn
18 Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 8484-8489
19 Ishii, S. I., Y. Nishi, and F. Egami. 1965. The fine structure of a pyocin. J. Mol. Biol. 13: 428-431   DOI   PUBMED
20 Lau, G. W., B. C. Goumnerov, C. L. Walendziewicz, J. Hewitson, W. Xiao, S. Mahajan-Miklos, R. G. Tompkins, L. A. Perkins, and L. G. Rahme. 2003. The Drosophila melanogaster Toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun. 71: 4059-4066   DOI   ScienceOn
21 Nakayama, K., S. Kanaya, M. Ohnishi, Y. Terawaki, and T. Hayashi. 1999. The complete nucleotide sequence of phage CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: Implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31: 399- 419   DOI   ScienceOn
22 Hodgson, D. A. 1989. Bacterial diversity: The range of interesting things that bacteria do, pp. 3-21. In D. A. Hopwood and K. F. Chater (eds.), Genetics of Bacterial Diversity. Academic Press, London, U.K
23 Kerr, B., M. A. Riley, M. W. Feldman, and B. J. M. Bohannan. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418: 171-174   DOI   ScienceOn
24 Daw, M. A. and F. R. Falkiner. 1997. Bacteriocins: Nature, function and structure. Micron 27: 467-479   DOI   ScienceOn
25 Parret, A. H. and R. De Mot. 2002. Bacteria killing their own kind: Novel bacteriocins of Pseudomonas and other gammaproteobacteria. Trends Microbiol. 10: 107-112   DOI   PUBMED   ScienceOn
26 Hoang, T. T., A. J. Kutchma, A. Becher, and H. P. Schweizer. 2000. Integration-proficient plasmids for Pseudomonas aeruginosa: Site-specific integration and use for engineering of reporter and expression strains. Plasmid 43: 59-72   DOI   ScienceOn
27 Montgomery, K. T., G. Grills, L. Li, W. A. Brown, J. Decker, R. Elliot, L. J. Gendal, K. Osborn, A. Perera, C. Xi, P. Juels, D. Lee, N. T. Liberati, J. He, S. Miyata, L. G. Rahme, M. Saucier, J. M. Urbach, F. M. Ausubel, and R. Kucherlapati. 2002. Pseudomonas aeruginosa strain UCBPP-PA14 whole genome shotgun sequencing project. Direct submission. Accession numbers AABQ07000000-AABQ07000005 [Online.] http://www.ncbi.nlm.nih.gov