Simple Method to Correct Gene-Specific Dye Bias from Partial Dye Swap Information of a DNA Microarray Experiment

  • KIM BYUNG SOO (Department of Applied Statistics, Yonsei University) ;
  • KANG SOO-JIN (Department of Applied Statistics, Yonsei University) ;
  • LEE SAET-BYUL (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Natural Products Division, Korea Institute of Science and Technology, Gangneung Institute) ;
  • HWANG WON (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • KIM KUN-SOO (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2005.12.01

Abstract

In a cDNA microarray experiment using Cy3 and Cy5 as labeling agents, particularly for the direct design, cDNAs from some genes incorporate one dye more efficiently than the other, which is referred to as the gene-specific dye bias. Dye-swaps, in which two dyes are switched on replicate arrays, are commonly used to control the gene-specific dye bias. We developed a simple procedure to extract the gene-specific dye bias information from a partial dye swap experiment. We detected gene-specific dye bias by identifying outliers in an X-Y plane, where the X axis represents the average log-ratio from two sets of dye swap pairs and the Y axis exhibits the average log ratio of four forward labeled arrays. We used this information for detecting differentially expressed genes, of which the additionally detected genes were validated by real-time RT-PCR.

Keywords

References

  1. Boer, J. M., W. K Huber, H. Sültman, F. Wilmer, A. von Heydebreck, S. Haas, B. Korn, B. Gunawan, B. Vente, L. Füzeshi, M. Vingron, and A. Poustka. 2001. Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array. Genome Res. 11: 1861-1870
  2. Chu, G., B. Narashimhan, R. Tibshirani, and V. Tusher. 2002. SAM 'Significance Analysis of Microarray' Users guide and technical document, http://www-stat.stanford.edu/~tibs/ SAM
  3. Churchill, G. A. 2002. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. Suppl. 32: 490-495 https://doi.org/10.1038/ng1031
  4. De Kievit, T. R. and B. Iglewski. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68: 4839-4849 https://doi.org/10.1128/IAI.68.9.4839-4849.2000
  5. Dobbin, K., E. S. Kawasaki, D. W. Petersen, and R. M. Simon. 2005. Characterizing dye bias in microarray experiments. Bioinformatics 21: 2430-2437 https://doi.org/10.1093/bioinformatics/bti378
  6. Dobbin, K., J. H. Shih, and R. Simon. 2003. Statistical analysis of reverse dye microarrays. Bioinformatics 19: 803-810 https://doi.org/10.1093/bioinformatics/btg076
  7. Dobbin, K. and R. Simon 2002. Comparison of microarray designs for class comparison and class discovery. Bioinformatics 18: 1438-1445 https://doi.org/10.1093/bioinformatics/18.11.1438
  8. Dombkowski, A. A., B. J. Thibodeau, S. L. Starcevic, and R. F. Novak. 2004. Gene-specific dye bias in micorarray reference designs. FEBS Lett. 560: 120-124 https://doi.org/10.1016/S0014-5793(04)00083-3
  9. Henke, J. M. and B. L. Bassler. 2004. Bacterial social engagement. Trends Cell Biol. 14: 648-656 https://doi.org/10.1016/j.tcb.2004.09.012
  10. Kawase, T., S.-I. Miyoshi, Z. Sultan, and S. Shinoda. 2004. Regulation system for protease production in Vibrio vulnificus. FEMS Microbiol. Lett. 240: 55-59 https://doi.org/10.1016/j.femsle.2004.09.023
  11. Kerr, M. K. and C. G. Churchill. 2001. Experimental design for gene expression microarrays. Biostatistics 2: 183-201 https://doi.org/10.1093/biostatistics/2.2.183
  12. Kim, B. S., I. Kim, S. Lee, S. Kim, S. Y. Rha, and H. C. Chung. 2005. Statistical methods of translating microarray data into clinically relevant diagnostic information in colorectal cancer. Bioinformatics 21: 517-528 https://doi.org/10.1093/bioinformatics/bti029
  13. Kim, S. Y., S. E. Lee, Y. R. Kim, C. M. Kim, P. Y. Ryu, H. E Choy, S. S. Chung, and J. H. Rhee. 2003. Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Mol. Microbiol. 48: 1647-1664 https://doi.org/10.1046/j.1365-2958.2003.03536.x
  14. Lim, M. S., M. H. Lee, J. H. Lee, H.-M. Ju, N. Y. Park, H. S. Jeong, J. E. Rhee, and S. H. Choi. 2005. Identification and characterization of the Vibrio vulnificus malPQ operon. J. Microbiol. Biotechnol. 15: 616-625
  15. Lonnstedt, I. and T. P. Speed. 2002. Replicated microarray data. Statistica Sinica 12: 31-46
  16. Martin-Magniette, M.-L., J. Aubert, E. Cabannes, and J.-J. Daudin. 2005. Evaulation of the gene-specific dye biasindDNA microarray experiment. Bioinformatics 21: 1995-2000 https://doi.org/10.1093/bioinformatics/bti302
  17. McDougald, D., S. A. Rice, and S. Kjelleberg. 2001. SmcRdependant regulation of adaptive phenotypes in Vibrio vulnificus. J. Bacteriol. 183: 758-762 https://doi.org/10.1128/JB.183.2.758-762.2001
  18. Rosenzweig, B. A., P. S. Pine, O. E. Domon, S. M. Morris, J. J. Chen, and F. D. Sistare. 2004. Dye-bias correction in duallabeled cDNA microarray gene expression measurements. Environ. Health Perspect. 112: 480-487 https://doi.org/10.1289/ehp.6694
  19. Salmond, G. P. C., B. W. Bycroft, G. S. A. B. Stewart, and P. Williams. 1995. The bacterial 'enigma': Cracking the code of cell-cell communication. Mol. Microbiol. 16: 615-624 https://doi.org/10.1111/j.1365-2958.1995.tb02424.x
  20. Simon, R. M., E. L. Korn, L. M. McShane, M. D. Radmacher, G. D. Wright, and Y. Zhao. 2003. Design and Analysis of DNA Micorarray Investigations, p. 19. Springer, New York, U.S.A
  21. Strom, M. S. and R. N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect. 2: 177-188 https://doi.org/10.1016/S1286-4579(00)00270-7
  22. Troyanskaya, O., M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, R. B. Altman. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17: 520-525 https://doi.org/10.1093/bioinformatics/17.6.520
  23. Tseng, G. C., M.-K. Oh, L. Rohlin, J. C. Liao, and W. H. Wong. 2001. Issues in cDNA microarray analysis: Quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res. 29: 2549- 2557 https://doi.org/10.1093/nar/29.12.2549
  24. Tusher, V., R. Tibshirani, and G. Chu. 2001. Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proc. Natl. Acad. Sci. USA 98: 5116- 5121
  25. Wright, A. C., J. G. Morris Jr., D. R. Maneval Jr., K. Richardson, and J. B. Baker. 1985. Cloning of the cytotoxinhemolysin gene of Vibrio vulnificus. Infect. Immun. 50: 922-924
  26. Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai, and T. P. Speed. 2002. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30: e15 https://doi.org/10.1093/nar/30.4.e15