Sulfonated Perfluorocyclobutyl Biphenylene Polymer Electrolyte Membranes for Fuel Cells

연료전지를 위한 술폰화된 Perfluorocyclobutyl Biphenylene 고분자 전해질막

  • Yoo Min-Chul (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology, Department of Chemical Engineering, Chungnam National University) ;
  • Chang Bong-Jin (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Kim Jeong-Hoon (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Lee Soo-Bok (Interface Materials & Eng. Lab. Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology) ;
  • Lee Yong-Taek (Department of Chemical Engineering, Chungnam National University)
  • 유민철 (한국화학연구원 계면재료공정팀, 충남대학교 화학공학과) ;
  • 장봉준 (한국화학연구원 계면재료공정팀) ;
  • 김정훈 (한국화학연구원 계면재료공정팀) ;
  • 이수복 (한국화학연구원 계면재료공정팀) ;
  • 이용택 (충남대학교 화학공학과)
  • Published : 2005.12.01

Abstract

A PFCB-containing biphenylene ether polymer was synthesized and sulfonated using chlorosulfonic acid and then cast into membranes from their solutions for fuel cell applications. Sulfonation reactions were carried out by changing the molar ratio of chlorosulfonic acid and the PFCB-containing biphenylene ether polymer under fixed time and temperature. The resulting sulfonated polymers showed different sulfonation degree (SD), ion exchange capacity (IEC), and water uptake. With the increment of the content of chlorosulfonic acid, the SD, IEC, water uptake of the sulfonated polymer membranes increased. The ion conductivity of the sulfonated PFCB-containing biphenylene ether polymers was compared with that of Nafion 115.

본 연구는 연료전지에 적용 가능한 술폰화된 고분자 이온교환막 개발에 관한 것으로, perfluorocyclobutane ring(PFCB)을 함유한 4,4'-biphenylene perfluorocyclobutyl ether 고분자를 합성하여 이를 술폰화제인 chlorosulfonic acid (CSA)와 용매인 dichloromethane (DCC) 혼합용액을 사용하여 후술폰화시킴으로써 PFCB기를 함유한 술폰화된 biphenylene 고분자 막을 제조하였다. 술폰화된 고분자의 제조시 biphenylene perfluorocyclobutyl ether 고분자와 CSA의 몰비를 각각 1:1, 1:2, 1:3, 1:4로 변화시켜주어 다양한 술폰산기의 함량을 갖는 이온교환막을 제조할 수 있었다. 합성된 화합물과 고분자는 NMR과 GPC를 통해서 분석 및 확인하였고, 술폰화된 막을 이용하여 술폰산기의 함량 변화에 따른 술폰화도, 이온교환용량, 함수율, 이온전도도 등을 측정하였다. 측정 결과, 술폰화도가 증가함에 따라 이온전도도, 이온교환용량 및 함수율이 연속적으로 증가하는 것을 확인할 수 있었다.

Keywords

References

  1. J. Stephens, 'Fuel processing for fuel cell power systems', Fuel Cells Bulletins, 12, 6 (1999)
  2. L. Carrette, K. A. Friedrich, and U. Stimming, 'Fundamentals and Applications', Fuel cells, 1, 1 (2001)
  3. R. K. Ahluwalia, X. Wang, A. Rousseau, and R. Kumar, 'Fuel economy of hydrogen fuel cell vehicles', J. Power Sources, 130, 192 (2004)
  4. J. Larminie and A. Dicks, 'fuel cell system explained', pp. 14-16, John wiley & Sons, New York (2000)
  5. T. Schultz and K. Sundmacher, 'Mass, charge and energy transport phenomena in a polymer electrolyte membrane (PEM) used in a direct methanol fuel cell (DMFC) : Modelling and experimental validation of fluxes', J. Membr. Sci., Article in press
  6. S. Kunda, I,. C. Simon, M. Fowler, and S. Grot, 'Mechanical properties of $Nafion^{TM}$ electrolyte membranes under hydrated conditions', Polymer, 46, 11707 (2005) https://doi.org/10.1016/j.polymer.2005.09.059
  7. S. L. Chen, A. B. Bocarsly, and J. Benziger, 'Nafion-Iayered sulfonated polysulfone fuel membrane', J. Power Sources, 152, 27 (2005) https://doi.org/10.1016/j.jpowsour.2005.03.214
  8. C. H. Wirguin, 'Recent advances in perfluorinated ionomer membrane:structure, properties', J. Membr. Sci., 120, 01 (1996)
  9. P. Staiti, F. Lufrano, A. S. Arico, E. Passalacqua, and V. Antonucci, 'Sulfonated polybenzimidazole membranes-preparation and physico-chemical characterization', J. Membr. Sci., 188, 71 (2001)
  10. S. Kaliaguine, S. D. Mikhailenko, K. P. Wang, P. Xing, G. Robertson, and M. Guiver, 'Properties of SPEEK based PEMs for fuel cell application', Catal. Today, 82, 213 (2003) https://doi.org/10.1016/S0920-5861(03)00235-9
  11. Y. Z. Fu and A. Manthiram, 'Synthesis and characterization of sulfonated polysulfone membranes for direct methanol fuel cells', J. Power Sources, Article in press
  12. J. P. Shin, B. J. Chang, J. H. Kim, S. B. Lee, and D. H. Sub, 'Sulfonated polystyrene/PTFE composite membranes', J. Membr. Sci., 251, 247 (2005)
  13. G. Meyer, G. Gebel, L. Gonon, P. Capron, D. Marscaq, C. Marestin, and R. Mercier, 'Degradation of sulfonated polyimide membranes in fuel cell conditions', J. Power Sources, Article in press
  14. C. Ma, L. Zhang, S. Mukerjee, D. Ofer, and B. Nair, 'An investigation of proton conduction in select PEM's and reaction layer interfaces-designed for elevated temperature operation', J. Membr. Sci., Article in press
  15. Q. Guo, P. N. Pintauro, H. Tang, and S. O'Connor, 'Sulfonated and crosslinked polyphosphazene-based proton exchange membranes', J. Membr. Sci., 154, 175 (1999)
  16. J. Wei, 'Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom', US Patent 5,422,411 (1995)
  17. F. Wang, J. Li, T. Chen, and J. Xu, 'Synthesis of poly( ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics', Polymer, 40, 795 (1999)
  18. X. Shang, S. Tian, L. Kong, and Y. Meng, 'Synthesis and characterization of sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane', J. Membr. Sci., 266, 94 (2005)
  19. D. A. Babb, 'Fluoropolymers l: Synthesis', edited by Hougham et al., pp. 25-50, Plenum Press, New York (1999)
  20. D. A. Babb, K. S. Clement, W. F. Richey, and B. R. Ezzell, 'Perfluorocyclobutane ring-containing polymers', US Patent 5,037,917 (1991)