DOI QR코드

DOI QR Code

Individual-breed Assignment Analysis in Swine Populations by Using Microsatellite Markers

  • Fan, B. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University) ;
  • Chen, Y.Z. (Centre for Advanced Technologies in Animal Genetics and Reproduction (Reprogen) Faculty of Veterinary Science, University of Sydney) ;
  • Moran, C. (Centre for Advanced Technologies in Animal Genetics and Reproduction (Reprogen) Faculty of Veterinary Science, University of Sydney) ;
  • Zhao, S.H (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University) ;
  • Liu, B. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University) ;
  • Yu, M. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University) ;
  • Zhu, M.J. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University) ;
  • Xiong, T.A. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University) ;
  • Li, K. (Laboratory of Molecular Biology and Animal Breeding, College of Animal Science and Technology Huazhong Agricultural University)
  • Received : 2004.09.26
  • Accepted : 2005.06.15
  • Published : 2005.11.01

Abstract

Individual-breed assignments were implemented in six swine populations using twenty six microsatellites recommended by the Food and Agriculture Organization and the International Society for Animal Genetics (FAO-ISAG). Most microsatellites exhibited high polymorphisms as shown by the number of alleles and the polymorphism information content. The assignment accuracy per locus obtained by using the Bayesian method ranged from 33.33% (CGA) to 68.47% (S0068), and the accumulated assignment accuracy of the top ten loci combination added up to 96.40%. The assignment power of microsatellites based on the Bayesian method had positive correlations with the number of alleles and the gene differential coefficient ($G_{st}$) per locus, while it has no relationship to genetic heterozygosity, polymorphism information content per locus and the exclusion probabilities under case II and case III. The percentage of corrected assignment was highest for the Bayesian method, followed by the gene frequency and distancebased methods. The assignment efficiency of microsatellites rose with increase in the number of loci used, and it can reach 98% when using a ten-locus combination. This indicated that such a set of ten microsatellites is sufficient for breed verification purposes.

Keywords

References

  1. Barker, J. S. F. 1994. A global protocol for determining genetic distance among domestic livestock breeds. Proc. 5th World Congr.Genet.Appl.Livest.Prod. 21:501-508.
  2. Guelph.Ontario, Canada. Behl, R., N. J. Sherora, J. Behl, M. S. Tantia and R. K. Vijh. 2002. Microsatellite Sequences of Mammals and Their Applications in Genome Analysis in Pigs-A Review. Asian-Aust .J. Anim. Sci. 15(12):1822-1830.
  3. Bjornstad, G. and K. H. Roed. 2001. Breed demarcation and potential for breed allocation of horse assessed by microsatellite markers. Anim. Genet. 32:59-65.
  4. Blott, S. C., J. L. Williams and C. S. Haley. 1999. Discriminating among cattle breeds using genetic markers. Heredity 82:613-619.
  5. Blouin, M. S., M. Parsons, V. Lacaille and S. Lotz. 1996. Use of microsatellite loci to classify individuals by relatedness. Molecular Ecology 5:393-401.
  6. Botstein, D., R. L. White, M. Skolnick and R. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
  7. Cornuet, J. M., S. Piry, G. Luikart, A. Estoup and M. Solignac. 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genet. 153:1989-2000.
  8. Dawson, K. J. and K. Belkhir. 2001. A Bayesian procedure to the identification of panmictic populations and the assignment of individuals. Genet. Res. Camb. 78:59-77.
  9. Gongora, J., Y. Chen, J. E. Bernal, F. W. Nicholas and C. Moran. 2002. Interspecific amplification of peccary microsatellite markers using porcine primers. Anim. Genet. 33:312-314.
  10. Gotz, K. and G. Thaller. 1998. Assignment of individuals to populations using microsatellites. J. Anim. Breed. Genet. 115:53-61.
  11. Heyen, D. W., J. E. Beever, D. Yang, R. E. Evert, C. Green, S. R. E. Bates and J. S. Ziegle. 1997. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semi-automated parentage testing. Anim. Genet. 28:21-27.
  12. Jamieson, A. and C. S. Taylor. 1997. Comparisons of three probability formulae for parentage testing. Anim. Genet. 28:397-400.
  13. Li, C. C., Z. G. Wang, B. Liu, S. L. Yang, Z. M. Zhu, B. Fan, M. Yu, S. H. Zhao and K. Li. 2004. Evaluation of the Genetic relationship among ten Chinese indigenous pig breeds with twenty-six microsatellite markers. Asian-Aust. J. Anim. Sci. 17:441-444.
  14. Li, K., Y. Chen, C. Moran, B. Fan, S. Zhao and Z. Peng. 2000. Analysis of diversity and genetic relationships between four Chinese indigenous pig breeds and one Australian commercial pig breed. Anim. Genet. 31:322-325.
  15. Luikart, G., M. P. Biju-Duval, O. Ertugrul, Y. Zagdsuren, C. Maudet and P. Taberlet. 1999. Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats. Anim. Genet. 30:431-438.
  16. Marklund, S., H. Ellegren, S. Eriksson, K. Sandberg and L. Andersson. 1994. Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellies. Anim. Genet. 25:19-23.
  17. Marshall, T. C., J. Slate, L. Kruuk and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7:639-655.
  18. Momments, G., A. van Zeveren and F. J. Peelman. 1998. Effectiveness of bovine microsatellites in resolving paternity cases in American bison, Bison bison L. Anim. Genet. 29:12-18.
  19. Nechtelberger, D., C. Kaltwasser, I. Stur, J. N. Meyer, G. Brem, M. Mueller and S. Müller. 2001. DNA microsatellite analysis for parentage control in Austrian pigs. Anim. Biotechnol. 12:141-144.
  20. Ota, T. 1993. DISPAN: Genetic Distance and Phylogenetic Analysis. Pennsylvania State University. University Park.
  21. Peischl, T., A. W. Kuss, E. Melchinger-Wild and H. Geldermann. 2005. Nine porcine microsatellite loci tested for size homoplasy in genetically diverse breeds. Anim. Genet. 36:244-247.
  22. Rannala, B. and J. L. Mountain. 1997. Detecting immigration by using multilocus genotype. Proc. Natl. Acad. Sci. USA 94:9197-9201.
  23. Raymond, M., Rousset, F. GENEPOP. Version 1.2. Population genetics software for exact tests and ecumenisism. J. Hered. 1995, 86:248-249.
  24. Toskinen, M. T. and P. Bredbadka. 1999. A convenient and efficient microsatellite-based assay for resolving parentage in dogs. Anim. Genet. 30:148-149.
  25. Usha, A. P., S. P. Simpson and J. L. Willians. 1995. Probability of random sire exclusion using microsatellite markers for parentage verification. Anim. Genet. 26:12-18.
  26. Villanueva, B., E. Verspoor and P. M. Visscher. 2002. Parental assignment in fish using microsatellite genetic marker with finite numbers of parents and offspring. Anim. Genet. 33:33-41.
  27. Wang, X., H. H. Cao, S. M. Geng and H. B. Li. 2004. Genetic diversity of 10 indigenous pig breeds in China by using microsatellites. Asian-Aust. J. Anim. Sci. 17:1219-1222.
  28. Yong, D. H., H. S.Kong, J. D. Oh, J. H. Lee, B. W. Cho, J. D. Kim, K. J. Jeon, C. Y. Jo, G. J. Jeon and H. K. Lee. 2005. Establishment of an individual identification system based on microsatellite polymorphism in Korean cattle (Henwoo). Asian-Aust. J. Anim. Sci. 18:762-766.
  29. Zhang, J. H., Y. Z. Xiong and C. Y. Deng. 2005. Correlations of genic heterozygosity and variances with heterosis in a pig populations revealed by microsatellites DNA marker. Asian-Aust. J. Anim. Sci. 18:620-625.

Cited by

  1. Tracing Asian Seabass Individuals to Single Fish Farms Using Microsatellites vol.7, pp.12, 2012, https://doi.org/10.1371/journal.pone.0052721
  2. Locus minimization in breed prediction using artificial neural network approach vol.45, pp.6, 2014, https://doi.org/10.1111/age.12208
  3. Genetic diversity of Afrikaner cattle in southern Africa pp.1573-7438, 2017, https://doi.org/10.1007/s11250-017-1447-9
  4. Multilocus Genotyping to Study Population Structure in Three Buffalo Populations of India vol.19, pp.8, 2005, https://doi.org/10.5713/ajas.2006.1071
  5. Characterization of Indian Riverine Buffaloes by Microsatellite Markers vol.19, pp.11, 2005, https://doi.org/10.5713/ajas.2006.1556
  6. Production of Kids from In vitro Fertilized Goat Embryos and Their Parentage Assessment Using Microsatellite Markers vol.20, pp.6, 2005, https://doi.org/10.5713/ajas.2007.842
  7. Genomic Heterogeneity of Chicken Populations in India vol.21, pp.12, 2005, https://doi.org/10.5713/ajas.2008.80299
  8. Xenotransplantation: Benefits, risks and relevance of reproductive technology vol.70, pp.8, 2008, https://doi.org/10.1016/j.theriogenology.2008.06.019
  9. 토종닭 순계와 실용계의 유전적 특성 및 품종식별력 분석 vol.20, pp.7, 2005, https://doi.org/10.5352/jls.2010.20.7.1086
  10. Individual Identification using The Multiplex PCR with Microsatellite Markers in Swine vol.37, pp.4, 2005, https://doi.org/10.12749/rdb.2013.37.4.205
  11. Comparing assignment-based approaches to breed identification within a large set of horses vol.60, pp.2, 2005, https://doi.org/10.1007/s13353-019-00495-x