Chemical Constituents from tile Fruit Peels of Fortunella japonica

  • Cho, Jeong-Yong (Institute of Health Biosciences, The University of Tokushima Graduate Schoo) ;
  • Kawazoe, Kazuyoshi (Institute of Health Biosciences, The University of Tokushima Graduate School) ;
  • Moon, Jae-Hak (Department of Food Science & Technology and Functional Food Research Center, Chonnam National University) ;
  • Park, Keun-Hyung (Department of Food Science & Technology and Functional Food Research Center, Chonnam National University) ;
  • Murakami, Kotaro (Institute of Health Biosciences, The University of Tokushima Graduate School) ;
  • Takaishi, Yoshihisa (Institute of Health Biosciences, The University of Tokushima Graduate School)
  • 발행 : 2005.10.31

초록

Chemical constituents of fruit peels of Fortunella japonica Swingle were investigated, and ten compounds were purified and isolated through various chromatographic procedures. Through NMR analysis, isolated compounds were identified as ${\alpha}$-tocopherol (1), lupenone (2), ${\beta}$-amyrin (3), ${\alpha}$-amyrin (4), ${\beta}$-sitosterol (5), ${\beta}$-sitosteryl 3-O-glucopyranoside (6), kaempferide 3-O-rhanmopyranoside (7), 3',5'-di-C-${\beta}$-glucopyranosylphloretin (8), acacetin 7-O-neohesperidoside (9), and acacetin 8-C-neohesperidoside (10). Compounds 1-7 were identified for the first time by our group from fruit peels of F. japonica.

키워드

참고문헌

  1. Am. J. Med. v.113 Bioactive compounds in Foods: Their role in the prevention of cardiovascular disease and cancer Kris-Etherton, P.M.;Hecker, K.D.;Bonanome, A.;Coval, S.M.;Binkoski, A.E.;Hilpert, K.F.;Oriel, A.E.;Etherton, T.D. https://doi.org/10.1016/S0002-9343(01)00995-0
  2. Food Chem. v.72 Natural antioxidants from residual sources Moure, A.;Cruz, J.M.;Franco, O.;Dominguez, J.M.;Sineiro, J.;Dominguez, H.;Nuriez, M.S.;Parajo, J.C. https://doi.org/10.1016/S0308-8146(00)00223-5
  3. Food Chem. Toxicol. v.37 Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea Weisburger, J.H. https://doi.org/10.1016/S0278-6915(99)00086-1
  4. Curr. Opin. Lipidol. v.13 Recent discoveries in inclusive food-based approaches and dietary patterns for reduction in risk for cardiovascular disease Kris-Etherton, P.M.;Etherton, T.O.;Carlson, J.;Oarder, C. https://doi.org/10.1097/00041433-200208000-00007
  5. Am. J. Cardiol. v.82 Nutriceuticals for cardiovascular health Cooke, J.P. https://doi.org/10.1016/S0002-9149(98)00239-2
  6. Cancer Lett. v.139 Inhibitory effect of Epstein-Barr virus activation by Citrus fruits, a cancer chemopreventor Iwase, Y.;Takemura, Y.;Ju-ichi, M.;Kawaii, S.;Yano, M.;Okuda, Y.;Mukainaka, T.;Tsuruta, A.;Okuda, M.;Takayasu, J.;Tokuda, H.;Nishino, H. https://doi.org/10.1016/S0304-3835(99)00041-5
  7. FFI J. Jpn. v.169 Bioactive compounds in citrus fruits peels Sawabe, A.;Matsubara, Y.
  8. Foods Biotechnol. v.6 The antioxidative activity of Korean Citrus unshiu peels Jeong, W.S.;Park, S.W.;Chung, S.K.
  9. Agric. Biol. Chem. v.50 Structure and hypotensive effect of flavonoid glycosides in orange (Citrus sinsensis OSBECK) peelings Kumamoto, H.;Matsubara, Y.;Iizuka, Y.;Okamoto, K.;Yokoi, K. https://doi.org/10.1271/bbb1961.50.781
  10. Agric. Biol. Chem. v.49 Structure and hypotensive of flavonoids glycosides in Citrus unshiu peelings Matsubara, Y.;Kumamoto, H.;Iizuka, Y.;Murakami, T.;Okamoto, K.;Miyake, H.;Yokoi, K. https://doi.org/10.1271/bbb1961.49.909
  11. Agric. Biol. Chem. v.49 Structure and hypotensive effect of flavonoid glycosides in sudachi peelings II Kumamoto, H.;Matsubara, Y.;Iizuka, Y.;Okamoto, K.;Yokoi, K. https://doi.org/10.1271/bbb1961.49.2797
  12. Trends Food Sci. Technol. v.15 Application of functional citrus by-products to meat products Fernandez-Lopez, J.;Fernandez-Gines, J.M.;Aleson-Carbonell, L.;Sendra, E.;Sayas-Barbera, E.;Perez-Alvarez, J.A.
  13. Food Sci. Biotechnol. v.13 Antibacterial and antifungal activity of citrus (Citrus unshiu) essential oil extracted from peel by-products Jo, C.R.;Park, B.J.;Chung, S.H.;Kim, C.B.;Cha, B.S.;Byun, M.W.
  14. Agric. Biol. Chem. v.49 Structure and hypotensive effect of flavonoid glycosides in kinkan (Fortunellajaponica) peelings I Kumamoto, H.;Matsubara, Y.;Iizuka, Y.;Okamoto, K.;Yokoi, K. https://doi.org/10.1271/bbb1961.49.2613
  15. Yakugaku Zasshi v.78 Isolation of a new flavone glycoside, fortunellin Matsuno, T.
  16. Phytochemistry v.57 3',5'-Di-C-${\beta}$-glucopyranosylphloretin, a flavonoid characteristic of the genus Fortunella Ogawa, K.;Kawasaki, A.;Omura, M.;Yoshida, T.;Ikoma, Y.;Yano, M. https://doi.org/10.1016/S0031-9422(01)00132-7
  17. J. Agric. Food Chem. v.42 Identification of volatile compounds isolated from round kumquat (Fortunellajaponica Swingle) Umano, K.;Hagi, Y.;Tamura, T.;Shoji, A.;Shibamoto, T. https://doi.org/10.1021/jf00045a011
  18. Tetrahedron v.32 $^{13}$C NMR spectra of tocopherols and 2,2dimethylchromanols Matsuo, M.;Urano, S. https://doi.org/10.1016/0040-4020(76)87006-8
  19. Phytochemistry v.32 Dehydro-6-hydroxyrotenoid and lupenone from Tephrosia villosa Prashant, A.;Krupadanam, G.L.D. https://doi.org/10.1016/S0031-9422(00)95025-8
  20. Phytochemistry v.37 $^{13}$C NMR spectra of phentacyclic triterpenoids-a complilation and some salient features Mahato, S.B.;Kundu, A.P. https://doi.org/10.1016/S0031-9422(00)89569-2
  21. J. Nat. Prod. v.53 Stigmasterols from Typha latifolia Greca, M.D.;Monaco, P.;Previtera, L. https://doi.org/10.1021/np50072a005
  22. J. Nat. Prod. v.46 Components of Bauhinia candicans Iribarren, A.M.;Pomilio, A.B. https://doi.org/10.1021/np50029a028
  23. Phytochemistry v.32 A flavonol glycoside from Agrimonia eupatoria Bilia, A.R.;Palme, E.;Marsili, A.;Pistelli, L.;Morelli, I. https://doi.org/10.1016/0031-9422(93)85262-P
  24. J. Sci. Food Agric. v.80 Vitamin E. Bramley, P.M.;Elmadfa, L.;Kafatos, A.;Kelly, F.J.;Manios, Y.;Roxborough, H.E.;Schuch, W.;Sheehy, P.J.A.;Wagner, K.H. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<913::AID-JSFA600>3.0.CO;2-3
  25. Phytochemistry v.30 Triterpenoids from gum mastic, the resin of Pistacia lenthiscus Marner, F.J.;Freyer, A.;Lex, J. https://doi.org/10.1016/0031-9422(91)80095-I
  26. J. Sci. Food Agric. v.80 Plant sterols: biosynthesis, biological function and their importance to human nutrition Piironen, V.;Lindsay, D.G.;Miettinen, T.A.;Toivo, J.;Lampi, A.M. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C
  27. J. Ethnopharm. v.94 Effects of Brazilian green propolis on the production of reactive oxygen species by stimulated neutrophils Simoes, L.M.C.;Gregorio, L.E.;Filho, A.A.D.S.;Douza, M.L.D.;Azzolini, A.E.C.S.;Bastos, J.K.;Lucisano-Valim, Y.M. https://doi.org/10.1016/j.jep.2004.04.026
  28. Steroids v.62 The estrogenic and anti estrogenic activities of phytochemicals with the human estrogen receptor expressed in yeast Collins, B.M.;McLachlan, J.A.;Arnold, S.F. https://doi.org/10.1016/S0039-128X(96)00246-2
  29. Chem. Pharm. Bull. v.51 Separation of Leucas aspera, a medicinal plant of Bangladesh, guided by prostaglandin inhibitory and antioxidant activities Sadhu, S.K.;Okuyama, E.;Fujimoto, H.;Ishibashi, M. https://doi.org/10.1248/cpb.51.595
  30. J. Nat. Prod. v.62 Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation Liao, Y.H.;Houghton, P.J.;Hoult, J.P. https://doi.org/10.1021/np990092+
  31. Biochem. Pharmacol. v.67 Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis Hsu, Y.L.;Kuo, P.L.;Lin, C.C. https://doi.org/10.1016/j.bcp.2003.09.042
  32. Chem. Biol. Interact. v.148 Molecular cytotoxic mechanisms of anticancer hydroxychalcones Sabzevari, O.;Galati, G.;Moridani, M.Y.;Siraki, A.;O'Brien, P.J. https://doi.org/10.1016/j.cbi.2004.04.004