• Title/Summary/Keyword: triterpenoid

Search Result 256, Processing Time 0.027 seconds

Triterpenoid Saponin Contents of the Leaf, Stem and Root of Codonopsis lanceolata (더덕 잎, 줄기, 뿌리 부위의 Triterpenoid 사포닌 함량)

  • Kim, Ji Ah;Moon, Heung Kyu;Choi, Yong Eui
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Codonopsis lanceolata (Campanulaceae) has been used in traditional medicines, as its roots contain several kinds of 3,28-bidesmosidic triterpenoid saponin with high medicinal values. In this study, we induced hairy root-derived transgenic plants of C. lanceolata and analyzed triterpenoid saponins from the leaf, stem and root. Transgenic plants were regenerated from the hairy roots via somatic embryogenesis. The saponins are lancemaside A, B and E, foetidissimoside A, and aster saponin Hb. Transgenic plants contained richer triterpenoids saponin than wild-type plants. Major saponin lancemaside A was the most abundant saponin in the stem from transgenic-plant, $4.76mg{\cdot}1^{-1}dry$ stem. These results suggest that transgenic plants of C. lanceolata could be used as medicinal materials for the production of triterpene saponins.

Development of a Transformation System for the Medicinal Fungus Sanghuangporus baumii and Acquisition of High-Value Strain

  • Zengcai Liu;Ruipeng Liu;Li Zou
    • Mycobiology
    • /
    • v.51 no.3
    • /
    • pp.169-177
    • /
    • 2023
  • To further explore the molecular mechanism of triterpenoid biosynthesis and acquire high-value strain of Sanghuangporus baumii, the Agrobacterium tumefaciens-mediated transformation (ATMT) system was studied. The key triterpenoid biosynthesis-associated gene isopentenyl diphosphate isomerase (IDI) was transformed into S. baumii by ATMT system. Then, the qRT-PCR technique was used to analyze gene transcript level, and the widely targeted metabolomics was used to investigate individual triterpenoid content. Total triterpenoid content and anti-oxidant activity were determined by spectrophotometer. In this study, we for the first time established an efficient ATMT system and transferred the IDI gene into S. baumii. Relative to the wild-type (WT) strain, the IDI-transformant (IT) strain showed significantly higher transcript levels of IDI and total triterpenoid content. We then investigated individual triterpenoids in S. baumii, which led to the identification of 10 distinct triterpenoids. The contents of individual triterpenoids produced by the IT2 strain were 1.76-10.03 times higher than those produced by the WT strain. The triterpenoid production showed a significant positive correlation with the IDI gene expression. Besides, IT2 strain showed better anti-oxidant activity. The findings provide valuable information about the biosynthetic pathway of triterpenoids and provide a strategy for cultivating high-value S. baumii strains.

Isolation of Triterpenoid Saponins from the Stems of Acer ginnala Maxim (신나무 줄기로부터 Saponin 성분의 분리)

  • Son, Yeun-Kyoung;Han, Yong-Nam
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.4 s.131
    • /
    • pp.301-304
    • /
    • 2002
  • Two triterpenoid saponine were isolated from the stems of Acer ginnala Maxim. The structures of triterpenoid saponins were established as ilexoside O, $3-O-{\alpha}-L- rhamnopyranosyl(1{\rightarrow}2)-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\beta}-D-xylopyranosyl-pubescenolic$ acid 28-{\beta}-D-glucopyranosyl$ ester(1) and ilexoside K, $3-O-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\beta}-D-xylopyranosyl-pubes-cenolic$ acid $28-{\beta}-D-glucopyranosyl$ ester(2). Their chemical structures have been elucidated on the basis of spectral methods.

Triterpenoid Components of Betula latifolia $K_{OMAROV}$ -Isolation and Characterization of Triterpenoids- (자작나무 엽(葉)의 Triterpenoid 성분연구(成分硏究) -Triterpenoid의 분리(分離) 및 동정(同定)-)

  • Han, Byung-Hoon;Chi, Hyung-Joon;Han, Young-Nam
    • Korean Journal of Pharmacognosy
    • /
    • v.4 no.4
    • /
    • pp.167-172
    • /
    • 1973
  • Five crystalline substances, which are positive to$L_{IEBERMAN}-B_{URCHARD}$ reaction, were isolated from the unsaponifiable fraction of the fresh leaves of Betula latifolia $K_{OMAROV}$ (Betulaceae)by silica gel column chromatographic purification. Compound $A\;(C_{29}H_{50}O,\;mp\;136^{\circ}), \;B\;(C_{30}H_{52}O_3,\;mp\;165^{\circ}), \;C\;(C_{30}H_{52}O_4,\;mp\;237^{\circ}), \;D\;(C_{30}H_{52}O_3,\;mp\;196^{\circ})\;and\; E\;(C_{30}H_{52}O_4,\;mp\;121^{\circ})$ were isolated. Compound B was characterized as a new tetracyclic triterpenoid. Compounds A, C and D were identified as ${\beta}-sitosterol$, betulatriterpene C, and betulafolienetriol, respectively.

  • PDF

Inhibition of Mouse Ear Edema by Steroidal and Triterpenoid Saponins

  • Kim, Sung-Yong;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.313-316
    • /
    • 1999
  • Certain steroids and triterpenoids isolated from diverse plant families were known to posses anti-inflammatory activity. In the course of finding new anti-inflammatory natural products, some steroidal and triterpenoid saponins were isolated and evaluated for their anti-inflammatory activity using in vivo mouse ear edema test. At the oral dose of 100 mg/kg, several steroidal saponins and triterpenoid saponins such as hederagenin glycosides showed significant inhibition of ear edema (20∼37% inhibition), though less potent than indomethacin and hydrocortisone.

  • PDF

Synthesis of epialeuritolic acid

  • Kang, Sam-Sik;Woo, Won-Sick
    • Archives of Pharmacal Research
    • /
    • v.9 no.3
    • /
    • pp.153-156
    • /
    • 1986
  • The triterpenoid isolated from the seeds of Phytolacca plants was confirmed to be acetylaleuritolic acid rather than acetylepialeuritolic acid by direct comparison with synthetic compounds.

  • PDF

Triterpenoid glycosides from rosa rugosa

  • Young, Han-Suk;Park, Jong-Cheol;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.10 no.4
    • /
    • pp.219-222
    • /
    • 1987
  • From the underground parts of Rosa rugosa(Rosaceae), 28-0-glucosides of euscaphic acid, tormentic acid and arjunic acid were isolated and characterized by spectral data.

  • PDF

Identification and quantification of oleanane triterpenoid saponins and potential analgesic and anti-inflammatory activities from the roots and rhizomes of Panax stipuleanatus

  • Shu, Pan-Pan;Li, Lu-Xi;He, Qin-Min;Pan, Jun;Li, Xiao-Lei;Zhu, Min;Yang, Ye;Qu, Yuan
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.305-315
    • /
    • 2021
  • Background: Panax stipuleanatus represents a folk medicine for treatment of inflammation. However, lack of experimental data does not confirm its function. This article aims to investigate the analgesic and anti-inflammatory activities of triterpenoid saponins isolated from P. stipuleanatus. Methods: The chemical characterization of P. stipuleanatus allowed the identification and quantitation of two major compounds. Analgesic effects of triterpenoid saponins were evaluated in two models of thermal- and chemical-stimulated acute pain. Anti-inflammatory effects of triterpenoid saponins were also evaluated using four models of acetic acid-induced vascular permeability, xylene-induced ear edema, carrageenan-induced paw edema, and cotton pellet-induced granuloma in mice. Results: Two triterpenoid saponins of stipuleanosides R1 (SP-R1) and R2 (SP-R2) were isolated and identified from P. stipuleanatus. The results showed that SP-R1 and SP-R2 significantly increased the latency time to thermal pain in the hot plate test and reduced the writhing response in the acetic acid-induced writhing test. SP-R1 and SP-R2 caused a significant decrease in vascular permeability, ear edema, paw edema, and granuloma formation in inflammatory models. Further studies showed that the levels of inflammatory mediators, nitric oxide, malondialdehyde, tumor necrosis factor-α, and interleukin 6 in paw tissues were downregulated by SP-R1 and SP-R2. In addition, the rational harvest of three- to five-year-old P. stipuleanatus was preferable to obtain a higher level of triterpenoid saponins. SP-R2 showed the highest content in P. stipuleanatus, which had potential as a chemical marker for quality control of P. stipuleanatus. Conclusion: This study provides important basic information about utilization of P. stipuleanatus resources for production of active triterpenoid saponins.

Triterpenoid production and phenotypic changes in hairy roots of Codonopsis lanceolata and the plants regenerated from them

  • Kim, Ji-Ah;Kim, Yun-Soo;Choi, Yong-Eui
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.255-263
    • /
    • 2011
  • Codonopsis lanceolata (Campanulaceae) has been used in traditional medicines, as its roots contain several kinds of triterpenoid saponin with high medicinal values. In this work, we induced transgenic hairy roots of C. lanceolata and analyzed triterpenoid saponins from the hairy roots and hairy root-derived transgenic plants. Hairy roots were obtained from leaf explants by the transformation of Agrobacterium rhizogenes R1000. Transgenic hairy root lines were confirmed by the transcriptional activities of rolA, B, C, and D genes by RT-PCR. Transgenic root lines actively proliferated on hormone-free medium but not in nontransformed roots. Hairy roots contained richer triterpenoids (lancemaside A, foetidissimoside A, and aster saponin Hb) than nontransformed roots. Transgenic plants were regenerated from the hairy roots via somatic embryogenesis. They showed phenotypic alterations such as shortened shoots and an increased number of axillary buds and adventitious roots. The transgenic plants also contained higher triterpenoid levels than wild-type plants. These results suggest that hairy roots and transgenic plants of C. lanceolata could be used as medicinal materials for the production of triterpene saponins.