Chemical Constituents from tile Fruit Peels of Fortunella japonica

  • Cho, Jeong-Yong (Institute of Health Biosciences, The University of Tokushima Graduate Schoo) ;
  • Kawazoe, Kazuyoshi (Institute of Health Biosciences, The University of Tokushima Graduate School) ;
  • Moon, Jae-Hak (Department of Food Science & Technology and Functional Food Research Center, Chonnam National University) ;
  • Park, Keun-Hyung (Department of Food Science & Technology and Functional Food Research Center, Chonnam National University) ;
  • Murakami, Kotaro (Institute of Health Biosciences, The University of Tokushima Graduate School) ;
  • Takaishi, Yoshihisa (Institute of Health Biosciences, The University of Tokushima Graduate School)
  • Published : 2005.10.31

Abstract

Chemical constituents of fruit peels of Fortunella japonica Swingle were investigated, and ten compounds were purified and isolated through various chromatographic procedures. Through NMR analysis, isolated compounds were identified as ${\alpha}$-tocopherol (1), lupenone (2), ${\beta}$-amyrin (3), ${\alpha}$-amyrin (4), ${\beta}$-sitosterol (5), ${\beta}$-sitosteryl 3-O-glucopyranoside (6), kaempferide 3-O-rhanmopyranoside (7), 3',5'-di-C-${\beta}$-glucopyranosylphloretin (8), acacetin 7-O-neohesperidoside (9), and acacetin 8-C-neohesperidoside (10). Compounds 1-7 were identified for the first time by our group from fruit peels of F. japonica.

Keywords

References

  1. Am. J. Med. v.113 Bioactive compounds in Foods: Their role in the prevention of cardiovascular disease and cancer Kris-Etherton, P.M.;Hecker, K.D.;Bonanome, A.;Coval, S.M.;Binkoski, A.E.;Hilpert, K.F.;Oriel, A.E.;Etherton, T.D. https://doi.org/10.1016/S0002-9343(01)00995-0
  2. Food Chem. v.72 Natural antioxidants from residual sources Moure, A.;Cruz, J.M.;Franco, O.;Dominguez, J.M.;Sineiro, J.;Dominguez, H.;Nuriez, M.S.;Parajo, J.C. https://doi.org/10.1016/S0308-8146(00)00223-5
  3. Food Chem. Toxicol. v.37 Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea Weisburger, J.H. https://doi.org/10.1016/S0278-6915(99)00086-1
  4. Curr. Opin. Lipidol. v.13 Recent discoveries in inclusive food-based approaches and dietary patterns for reduction in risk for cardiovascular disease Kris-Etherton, P.M.;Etherton, T.O.;Carlson, J.;Oarder, C. https://doi.org/10.1097/00041433-200208000-00007
  5. Am. J. Cardiol. v.82 Nutriceuticals for cardiovascular health Cooke, J.P. https://doi.org/10.1016/S0002-9149(98)00239-2
  6. Cancer Lett. v.139 Inhibitory effect of Epstein-Barr virus activation by Citrus fruits, a cancer chemopreventor Iwase, Y.;Takemura, Y.;Ju-ichi, M.;Kawaii, S.;Yano, M.;Okuda, Y.;Mukainaka, T.;Tsuruta, A.;Okuda, M.;Takayasu, J.;Tokuda, H.;Nishino, H. https://doi.org/10.1016/S0304-3835(99)00041-5
  7. FFI J. Jpn. v.169 Bioactive compounds in citrus fruits peels Sawabe, A.;Matsubara, Y.
  8. Foods Biotechnol. v.6 The antioxidative activity of Korean Citrus unshiu peels Jeong, W.S.;Park, S.W.;Chung, S.K.
  9. Agric. Biol. Chem. v.50 Structure and hypotensive effect of flavonoid glycosides in orange (Citrus sinsensis OSBECK) peelings Kumamoto, H.;Matsubara, Y.;Iizuka, Y.;Okamoto, K.;Yokoi, K. https://doi.org/10.1271/bbb1961.50.781
  10. Agric. Biol. Chem. v.49 Structure and hypotensive of flavonoids glycosides in Citrus unshiu peelings Matsubara, Y.;Kumamoto, H.;Iizuka, Y.;Murakami, T.;Okamoto, K.;Miyake, H.;Yokoi, K. https://doi.org/10.1271/bbb1961.49.909
  11. Agric. Biol. Chem. v.49 Structure and hypotensive effect of flavonoid glycosides in sudachi peelings II Kumamoto, H.;Matsubara, Y.;Iizuka, Y.;Okamoto, K.;Yokoi, K. https://doi.org/10.1271/bbb1961.49.2797
  12. Trends Food Sci. Technol. v.15 Application of functional citrus by-products to meat products Fernandez-Lopez, J.;Fernandez-Gines, J.M.;Aleson-Carbonell, L.;Sendra, E.;Sayas-Barbera, E.;Perez-Alvarez, J.A.
  13. Food Sci. Biotechnol. v.13 Antibacterial and antifungal activity of citrus (Citrus unshiu) essential oil extracted from peel by-products Jo, C.R.;Park, B.J.;Chung, S.H.;Kim, C.B.;Cha, B.S.;Byun, M.W.
  14. Agric. Biol. Chem. v.49 Structure and hypotensive effect of flavonoid glycosides in kinkan (Fortunellajaponica) peelings I Kumamoto, H.;Matsubara, Y.;Iizuka, Y.;Okamoto, K.;Yokoi, K. https://doi.org/10.1271/bbb1961.49.2613
  15. Yakugaku Zasshi v.78 Isolation of a new flavone glycoside, fortunellin Matsuno, T.
  16. Phytochemistry v.57 3',5'-Di-C-${\beta}$-glucopyranosylphloretin, a flavonoid characteristic of the genus Fortunella Ogawa, K.;Kawasaki, A.;Omura, M.;Yoshida, T.;Ikoma, Y.;Yano, M. https://doi.org/10.1016/S0031-9422(01)00132-7
  17. J. Agric. Food Chem. v.42 Identification of volatile compounds isolated from round kumquat (Fortunellajaponica Swingle) Umano, K.;Hagi, Y.;Tamura, T.;Shoji, A.;Shibamoto, T. https://doi.org/10.1021/jf00045a011
  18. Tetrahedron v.32 $^{13}$C NMR spectra of tocopherols and 2,2dimethylchromanols Matsuo, M.;Urano, S. https://doi.org/10.1016/0040-4020(76)87006-8
  19. Phytochemistry v.32 Dehydro-6-hydroxyrotenoid and lupenone from Tephrosia villosa Prashant, A.;Krupadanam, G.L.D. https://doi.org/10.1016/S0031-9422(00)95025-8
  20. Phytochemistry v.37 $^{13}$C NMR spectra of phentacyclic triterpenoids-a complilation and some salient features Mahato, S.B.;Kundu, A.P. https://doi.org/10.1016/S0031-9422(00)89569-2
  21. J. Nat. Prod. v.53 Stigmasterols from Typha latifolia Greca, M.D.;Monaco, P.;Previtera, L. https://doi.org/10.1021/np50072a005
  22. J. Nat. Prod. v.46 Components of Bauhinia candicans Iribarren, A.M.;Pomilio, A.B. https://doi.org/10.1021/np50029a028
  23. Phytochemistry v.32 A flavonol glycoside from Agrimonia eupatoria Bilia, A.R.;Palme, E.;Marsili, A.;Pistelli, L.;Morelli, I. https://doi.org/10.1016/0031-9422(93)85262-P
  24. J. Sci. Food Agric. v.80 Vitamin E. Bramley, P.M.;Elmadfa, L.;Kafatos, A.;Kelly, F.J.;Manios, Y.;Roxborough, H.E.;Schuch, W.;Sheehy, P.J.A.;Wagner, K.H. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<913::AID-JSFA600>3.0.CO;2-3
  25. Phytochemistry v.30 Triterpenoids from gum mastic, the resin of Pistacia lenthiscus Marner, F.J.;Freyer, A.;Lex, J. https://doi.org/10.1016/0031-9422(91)80095-I
  26. J. Sci. Food Agric. v.80 Plant sterols: biosynthesis, biological function and their importance to human nutrition Piironen, V.;Lindsay, D.G.;Miettinen, T.A.;Toivo, J.;Lampi, A.M. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C
  27. J. Ethnopharm. v.94 Effects of Brazilian green propolis on the production of reactive oxygen species by stimulated neutrophils Simoes, L.M.C.;Gregorio, L.E.;Filho, A.A.D.S.;Douza, M.L.D.;Azzolini, A.E.C.S.;Bastos, J.K.;Lucisano-Valim, Y.M. https://doi.org/10.1016/j.jep.2004.04.026
  28. Steroids v.62 The estrogenic and anti estrogenic activities of phytochemicals with the human estrogen receptor expressed in yeast Collins, B.M.;McLachlan, J.A.;Arnold, S.F. https://doi.org/10.1016/S0039-128X(96)00246-2
  29. Chem. Pharm. Bull. v.51 Separation of Leucas aspera, a medicinal plant of Bangladesh, guided by prostaglandin inhibitory and antioxidant activities Sadhu, S.K.;Okuyama, E.;Fujimoto, H.;Ishibashi, M. https://doi.org/10.1248/cpb.51.595
  30. J. Nat. Prod. v.62 Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation Liao, Y.H.;Houghton, P.J.;Hoult, J.P. https://doi.org/10.1021/np990092+
  31. Biochem. Pharmacol. v.67 Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis Hsu, Y.L.;Kuo, P.L.;Lin, C.C. https://doi.org/10.1016/j.bcp.2003.09.042
  32. Chem. Biol. Interact. v.148 Molecular cytotoxic mechanisms of anticancer hydroxychalcones Sabzevari, O.;Galati, G.;Moridani, M.Y.;Siraki, A.;O'Brien, P.J. https://doi.org/10.1016/j.cbi.2004.04.004