DOI QR코드

DOI QR Code

Soil Seed Banks at Three Ecological Preservation Areas in Seoul

서울시 생태계 보전지역 3곳에서의 토양 종자은행

  • Kim, Jae-Geun (Department of Biology Education, Seoul National University) ;
  • Ju, Eun-Jung (Department of Biology Education, Seoul National University)
  • Published : 2005.10.31

Abstract

Soil seed banks at ecological preservation areas in Seoul, Jinkwannae-dong, Bangi-dong and Bam-sum, were studied by seedling emergence method from May to October 2004. Total number of species and individuals in seed banks were 42 and 5,190 at Jinkwannae-dong, 39 and 2,290 at Bangi-dong, and 39 and 1,047 at Bamsum. Salix koreensis community at Jinkwannae-dong has the highest number of seedlings among all sites. The most abundant species were Lindernia procumbens in Jinkwannae-dong and Bam-sum and Typha spp. in Bangi-dong. The dominant species of seed banks were different from that of plant communities such as Phragmites communis community, Salix koreensis community, Persicaria thunbergii community, Phragmites japonica community, and Populus tomentiglandulosa community. However the dominant species of seed banks in Typha community was Typha spp. Total 63 species emerged in either the wet or submerged conditions. Fifty six species appeared in the wet condition and 25 in the submerged condition. Eighteen species appeared in both conditions. Numbers of species and individuals were much less in the submerged condition than in the wet condition but free-floating hydrophytes including Rorippa islandica and floating-leaved hydrophytes including Monochoria vaginalis appeared only in the submerged condition. In the investigation of soil seed bank by distance from water edge (Bamsum), water side 3 ($300\sim350m$ from water) edge, where water level is fluctuating frequently, has the highest number of seedlings.

서울시 생태계 보전지역인 진관내동 습지, 방이동 습지와 밤섬에서 2004년 3월 토양을 채취한후 5월부터 10월까지 유묘출현법(seedling emergence method)으로 토양 종자은행을 관찰하였다. 그 결과 진관내동에서는 총 42종, 5,190개체가 출현하였고, 방이동에서는 총 39종, 2,265개체, 밤섬에서는 총 39종, 1,047개체가 발아하였으며 가장 개체수가 많았던 곳은 진관내동 버드나무군락이었다. 진관내동 습지와 밤섬에서 가장 많은 개체수를 보인 것은 밭뚝외풀이었고 방이동 습지에서는 부들속 식물들이었다. 진관내동과 방이동에서 실시한 군락별 토양 종자은행 조사 결과 갈대군락, 버드나무군락, 고마리군락, 달뿌리풀군락, 은사시나무군락 등에서 지상부 우점종과 지하부 우점종이서로 다른 반면 애기부들군락과 부들군락에서는 일치하였다. 습윤조건에서 56종, 침수조건에서 25종이 출현하였고, 두 조건에서 다 출현한 종은 18종이었다. 개구리밥등의 부유식물과 물닭개비등의 일부 정수식물은 침수조건에서만 발아하였다. 부들속 식물, 돌피 골풀 등의 정수식물은 습윤과 침수 조건 모두에서 발아하였다. 밤섬에서 채취한 수변으로부터와 거리별 토양 종자은행에서는 수위의 유동성이 큰 수변 3(식생대로부터 거리 $300\sim350m$)에서 가장 많은 수의 종자가 관찰되었다.

Keywords

References

  1. 서울시정개발연구원. 2001. 서울시 우수 생태계지역 정밀조사 연구. 서울특별시. pp. 283-316
  2. 서울특별시. 2002. 밤섬 생태계 보전지역의 생태변화관찰 및 관리 대책. 33p
  3. 서울특별시. 2004. 밤섬 생태계 보전지역의 생태변화관찰 및 관리 대책. 143p
  4. 서울특별시. 2005. 진관내동 생태계 보전지역 생태변화관찰 및 관 리대책. 85p
  5. 이경재, 권전오, 이수동. 2003. 서울시 주요 습지유형별 생태적 특성 분석. 한국환경생태학회지 17: 44-55
  6. 이창복. 1999. 대한식물도감. 향문사. 990p
  7. Avernethy, V.J. and N.J. Willby. 1999. Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats. Plant Ecol. 140: 177-190 https://doi.org/10.1023/A:1009779411686
  8. Baldwin, A.H., K.L McKee and I.A. Mendelssohn. 1996. The influence of vegetation, salinity, and inundation on seed banks of oligohaline coastal marshes. Am. J. Bot. 83: 470-479 https://doi.org/10.2307/2446216
  9. Bigwood, D.W. and D.W. Inouye. 1988. Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69: 479-507
  10. Brock, M.A., K.H. Rogers. 1998. The regeneration potential of the seed bank of an ephemeral floodplain in South Africa. Aquatic Bot. 61: 123-135 https://doi.org/10.1016/S0304-3770(98)00062-X
  11. Casanova, M.T. and M.A. Brock. 2000. How do depth duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol. 147: 237-250 https://doi.org/10.1023/A:1009875226637
  12. Cronk, J.K. and M.S. Fennessy. 2001.Wetland Plants: Biology and Ecology. CRC Press. U.S
  13. Galatowitsh, S.M. and A.G. van der Valk. 1996. The vegetation of restored and natural prairie wetlands. Ecol. Applic. 6: 102-112 https://doi.org/10.2307/2269557
  14. Haag, R.W. 1981. Emergence of seedlings of aquatic macrophytes from lake sediments. Can. J. Bot. 61: 148-156 https://doi.org/10.1139/b83-014
  15. Harwell, M.C. and K.E. Havens. 2003. Experimental studies on the recovery potential of submerged aquatic vegetation after flooding and desiccation in a large subtropical lake. Aquatic Bot. 77: 135-151 https://doi.org/10.1016/S0304-3770(03)00101-3
  16. Johnson, S. 2004. Effects of water level and phosphorus enrichment on seedling emergence from marsh seed banks collected from northern Belize. Aqua. Bot. 79: 311-323 https://doi.org/10.1016/j.aquabot.2004.05.003
  17. Keddy, P.A. and T.H. Ellis. 1985. Seedling recruitment of 11 wetland plant species along a water level gradient: shared of distinct responses? Can. J. Bot. 63: 1876-1879 https://doi.org/10.1139/b85-263
  18. Leck, M.A. 1989. Ecology of Soil Seed Banks. Academic Press. New York. 462p
  19. Mitsch, W.J. and J.G. Gosselink. 2000. Wetlands. Van-Nostrand-Reinhold. New York. 920p
  20. Parker, V.T. and M.A. Leck. 1985. Relationships of seed banks to plant distribution patterns in a freshwater tidal wetland. Am. J. Bot. 72: 161-174 https://doi.org/10.2307/2443543
  21. Rumpho, M.E. and R.A. Kennedy. 1981. Anaerobic metabolism in germinating seed of Echinochloa crus-galli (barnyard grass) metabolite and enzyme studies. Plant Physiol. 68: 165-168 https://doi.org/10.1104/pp.68.1.165
  22. Schneider, R.L. and R.R. Sharitz. 1986. Seed bank dynamics in a southeastern riverine swamp. Am. J. Bot. 73: 1022-1030 https://doi.org/10.2307/2444121
  23. Schupp, E.W. 1995. Seed-seedling conflict, habitat choice, and patterns of plant recruitment. Am. J. Bot. 82: 399-409 https://doi.org/10.2307/2445586
  24. Smith, L.M. and J.A. Kadlec. 1983. Seed banks and their role during drawdown of a North American marsh. J. App. Ecol. 20: 673-684 https://doi.org/10.2307/2403534
  25. Titus, J. and D.T. Hoover. 1991. Toward predicting reproductive success in submersed freshwater angiosperms. Aquatic Bot. 41: 111-136 https://doi.org/10.1016/0304-3770(91)90041-3
  26. van der Valk, A.G. and C.B. Davis. 1976. The seed banks of prairie glacial marshes. Can. J. Bot. 54: 1832-1838 https://doi.org/10.1139/b76-197
  27. van der Valk, A.G. and C.B. Davis. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322-335 https://doi.org/10.2307/1936377
  28. van der Valk, A.G. and C.B. Davis. 1979. A reconstruction of the recent vegetational history of a prairie marsh, eagle lake, Iowa, from its seed bank. Aquatic Bot. 6: 29-51 https://doi.org/10.1016/0304-3770(79)90049-4
  29. Warwick, N.W.M. and M.A. Brock. 2003. Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding. Aquatic Bot. 77: 153-167 https://doi.org/10.1016/S0304-3770(03)00102-5