DOI QR코드

DOI QR Code

Organic Carbon Distribution in an Oak Forest

상수리나무림의 유기탄소 분포에 관한 연구

  • Published : 2005.10.31

Abstract

In order to investigate the organic carbon distribution, net primary production, annual litter production, organic carbon in litter layer, soil organic carbon and soil respiration were studied in an oak forest, Kongju, Chungnam Province in Korea. Net primary production was estimated to 15.84 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$. The amount of carbon allocated to leaf and reproductive organ, branch, stem and root was 1.71, 4.03, 7.34, 2.76 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$ respectively. Annual litter production was 5.21 $ton{\cdot}ha^{-1}{\cdot}yr^{-1}$, which amounted to 2.35 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$. Average amount of organic carbon in litter layer (L+F) was 6.06 ton C/ha, and that of L layer decreased from winter through summer. Soil organic carbon decreased along the soil depth. Average amount of soil organic carbon in this oak forest was 165.19 ton C/ha. The amount of carbon evolved through soil respiration was 11.24 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$. Net amount of 4.60 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$ was absorbed from the atmosphere by this oak forest.

삼림생태계의 유기탄소 분포를 파악하기 위하여, 공주지역 상수리나무림에서 연순생산량, 연간 낙엽생산량, 임상 낙엽층의 유기탄소량, 토양의 유기탄소량, 연간 토양호흡량을 조사하였다. 조사기간 중 상수리나무림의 순일차생산량은 15.84 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$으로 추정되었으며, 잎과 생식기관, 가지, 줄기, 뿌리에 각각 1.71, 4.03, 7.34, 2.76 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$이 배분되었다. 연간 낙엽생산량은 5.21 $ton{\cdot}ha^{-1}{\cdot}yr^{-1}$이었으며, 생산된 낙엽을 통해 연간 임상으로 이입되는 유기탄소량은 2.35 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$이었다. 상수리나무 임상 낙엽층의 평균 유기탄소량은 6.06 ton C/ha로 조사되었으며, L층의 유기탄소량은 동절기에서 하절기로 갈수록 감소하는 경향을 보였다. 토양층별 유기탄소 함량은 표층에서 하층으로 갈수록 낮아졌으며, 본 상수리나무림 토양의 단위면적당 유기탄소량은 165.19 ton C/ha로 조사되었다. 상수리나무림은 토양호흡을 통해 연간 11.24 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$를 대기 중으로 방출하였다. 조사지 상수리나무림은 대기 중으로부터 연간 4.60 ton $C{\cdot}ha^{-1}{\cdot}yr^{-1}$을 순흡수 하였다.

Keywords

References

  1. Chae, M.I. and J.H. Kim. 1977. Comparisons of biomass, productivity and productive structure between Korean alder and oak stands. Korean J. Ecol. 1: 57-65
  2. Chang, N.K. and I.J. Lee. 1983. A study of matter production and decomposition of Quercus serrata and Carpinus Laxiflora forests at Piagol in Mt. Jiri. Korean J. Ecol. 6(3): 198-207
  3. Chang, N.K. and M.A. Chung. 1986. A study on the production and decomposition of litters along altitude of Mt. Dokyoo. Korean J. Ecol. 9(4): 185-192
  4. Chapman, S.B. 1979. Some interrelationship between soil and root respiration in Lowland Calluna Heathland in southern England. J. Ecol. 67:1-20 https://doi.org/10.2307/2259333
  5. Coleman, D. 1973. Compartment analysis of total soil respiration: an exploratory study. Oikos 24: 465-468 https://doi.org/10.2307/3543823
  6. Eswaran, H., E. Van den Berg, P. Reich and J. Kimble. 1995. Global soil carbon resources. In Soils and Global Change. eds. R. Lal, J. Kimble, E. Levine and B.A. Stewart. pp. 27-44
  7. Grigal, D.F. and L.F Ohmann. 1992. Carbon storage in upland forests of the Lake States. Soil Sci. Am. J. 56: 935-945 https://doi.org/10.2136/sssaj1992.03615995005600030042x
  8. Han, D.Y. 2002. Carbon cycle modelling by litter decomposition rate and estimation of carbon dioxide budget in Quercus mongolica forest at Mt. Songni National Park. Ph.D. Thesis. Chungbuk National University. 207 p
  9. Hanson, P.J., S.D. Wullschleger, S.A. Bohlman and D.E. Todd. 1993. Seasonal topographic patterns of forest floor $CO_2$ efflux form an upland oak forest. Tree Physiol. 13: 1-15 https://doi.org/10.1093/treephys/13.1.1
  10. Houghton, R.A., J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of $CO_2$ to the atmosphere. Ecol. Monogr. 53: 235-262 https://doi.org/10.2307/1942531
  11. Johnson, C.A., P. Groffman, D.D. Breshears, Z.G. Cardon, W. Currie, W. Emanuel, J. Gaudinski, R.B. Jackson, K. Lajtha, K. Nadelhoffer, D. Nelson Jr., W.M. Post, G. Retallack and L. Wielopolski. 2004. Carbon cycling in soil. Fron. Ecol. Envron. 2(10): 522-528 https://doi.org/10.1890/1540-9295(2004)002[0522:CCIS]2.0.CO;2
  12. Johnson, F.L. and P.G. Risser. 1974. Biomass, annual net primary production and dynamics of six mineral elements in a post oak-blackhack oak forest. Ecology 55: 1246-1258 https://doi.org/10.2307/1935453
  13. Kimble, J.M., L.S. Heath, R.A. Birdsey and R. Lal. 2003. The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York. 429 p
  14. Kira, T. and T. Shidei. 1967. Primary production and turnover of organic matter in different forest ecosystems of the western pacific. Jap. J. Ecol. 17: 70-87
  15. Knapp, A.K., S.L. Conard and J.M. Blair. 1998. Determination of soil $CO_2$ flux from a subhumid grassland: Effects of fire and fire history. Ecol. Appl. 4: 760-770
  16. Lee, Y.Y. and H.T. Mun. 2001. A study on the soil respiration in Quercus acutissima forest. Korean J. Ecol. 24: 141-147
  17. Montagu, K.D., A. Cowie, A. Rawson, B.R. Wilson and B.H. George. 2003. Carbon sequestration predictor for land use change in inland areas of New South Wales-background, user notes, assumptions and preliminary model testing. Version 2.0. Research and Development Division State Forests of New South Wales. Sidney. p. 35
  18. Morris, S.J. and E.A. Paul. 2003. Forest soil ecology and soil organic carbon. In: J.M. Kimble, L.S. Heath, R.A. Birdsey and R. Lal (eds,). The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York. pp. 109-125
  19. Mun, H.T. and H.T. Joo. 1994. Litter production and decomposition in the Quercus acutissima and Pinus rigida forests. Korean J. Ecol. 17: 345-353
  20. Park, B.K. and I.S. Lee. 1981. A model for litter decomposition of the forest ecosystem in South Korea. Korean J. Ecol. 4: 38-51
  21. Persson, H. 1980. Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden. Oikos 34: 77-87 https://doi.org/10.2307/3544552
  22. Pregitzer, K.S. 2003. Carbon cycling in forest ecosystems with an emphasis on belowground processes. In: J.M. Kimble, L.S. Heath, R.A. Birdsey and R. Lal (eds,). The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York. pp. 93-107
  23. Pyo, J.H., S.U. Kim and H.T. Mun. 2003. A study on the carbon budget in Pinus koreansis plantation. Korean J. Ecol. 26: 129-134 https://doi.org/10.5141/JEFB.2003.26.3.129
  24. Schlesinger, W.H. 1997. Biogeochemistry: An analysis of global change. Academic Press, San Diego, California
  25. Son, Y.H., G. Lee and J.Y. Hong. 1994. Soil carbon dioxide evolution in three deciduous tree plantations. J. Kor. Soc. Soil Sic. Fertil. 27: 290-295
  26. Song, C.Y., K. Chang, K. Park and S. Lee. 1997. Analysis of carbon fixation in natural forests of Quercus mongolica and Quercus variabilis. J. Korean For. Soc. 86: 35-45
  27. Swift, M.J., O.W. Heal and J.M. Anderson. 1979. Decomposition in terrestrial ecosystems. Studies in Ecology. Vol. 5. Univ. of California Press, Berkley & Los Angeles. 372p
  28. Tans, P.P., I.Y. Fung and T. Takahashi. 1990. Observational constraints on the global atmospheric $CO_2$ budget. Science 247: 1431-1438 https://doi.org/10.1126/science.247.4949.1431
  29. Vitousek, P.M. 1991. Can planted forests counteract increasing atmopheric carbon dixide? J. Environ. Qual. 20: 348-354 https://doi.org/10.2134/jeq1991.202348x

Cited by

  1. Belowground Carbon Storage by Stand Age Classes and Regions of Red Pine (Pinus densiflora) and Cork Oak (Quercus variabilis) Stands in Western Gyeongnam province vol.49, pp.1, 2015, https://doi.org/10.14397/jals.2015.49.1.29