References
- Chae, M.I. and J.H. Kim. 1977. Comparisons of biomass, productivity and productive structure between Korean alder and oak stands. Korean J. Ecol. 1: 57-65
- Chang, N.K. and I.J. Lee. 1983. A study of matter production and decomposition of Quercus serrata and Carpinus Laxiflora forests at Piagol in Mt. Jiri. Korean J. Ecol. 6(3): 198-207
- Chang, N.K. and M.A. Chung. 1986. A study on the production and decomposition of litters along altitude of Mt. Dokyoo. Korean J. Ecol. 9(4): 185-192
- Chapman, S.B. 1979. Some interrelationship between soil and root respiration in Lowland Calluna Heathland in southern England. J. Ecol. 67:1-20 https://doi.org/10.2307/2259333
- Coleman, D. 1973. Compartment analysis of total soil respiration: an exploratory study. Oikos 24: 465-468 https://doi.org/10.2307/3543823
- Eswaran, H., E. Van den Berg, P. Reich and J. Kimble. 1995. Global soil carbon resources. In Soils and Global Change. eds. R. Lal, J. Kimble, E. Levine and B.A. Stewart. pp. 27-44
- Grigal, D.F. and L.F Ohmann. 1992. Carbon storage in upland forests of the Lake States. Soil Sci. Am. J. 56: 935-945 https://doi.org/10.2136/sssaj1992.03615995005600030042x
- Han, D.Y. 2002. Carbon cycle modelling by litter decomposition rate and estimation of carbon dioxide budget in Quercus mongolica forest at Mt. Songni National Park. Ph.D. Thesis. Chungbuk National University. 207 p
-
Hanson, P.J., S.D. Wullschleger, S.A. Bohlman and D.E. Todd. 1993. Seasonal topographic patterns of forest floor
$CO_2$ efflux form an upland oak forest. Tree Physiol. 13: 1-15 https://doi.org/10.1093/treephys/13.1.1 -
Houghton, R.A., J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of
$CO_2$ to the atmosphere. Ecol. Monogr. 53: 235-262 https://doi.org/10.2307/1942531 - Johnson, C.A., P. Groffman, D.D. Breshears, Z.G. Cardon, W. Currie, W. Emanuel, J. Gaudinski, R.B. Jackson, K. Lajtha, K. Nadelhoffer, D. Nelson Jr., W.M. Post, G. Retallack and L. Wielopolski. 2004. Carbon cycling in soil. Fron. Ecol. Envron. 2(10): 522-528 https://doi.org/10.1890/1540-9295(2004)002[0522:CCIS]2.0.CO;2
- Johnson, F.L. and P.G. Risser. 1974. Biomass, annual net primary production and dynamics of six mineral elements in a post oak-blackhack oak forest. Ecology 55: 1246-1258 https://doi.org/10.2307/1935453
- Kimble, J.M., L.S. Heath, R.A. Birdsey and R. Lal. 2003. The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York. 429 p
- Kira, T. and T. Shidei. 1967. Primary production and turnover of organic matter in different forest ecosystems of the western pacific. Jap. J. Ecol. 17: 70-87
-
Knapp, A.K., S.L. Conard and J.M. Blair. 1998. Determination of soil
$CO_2$ flux from a subhumid grassland: Effects of fire and fire history. Ecol. Appl. 4: 760-770 - Lee, Y.Y. and H.T. Mun. 2001. A study on the soil respiration in Quercus acutissima forest. Korean J. Ecol. 24: 141-147
- Montagu, K.D., A. Cowie, A. Rawson, B.R. Wilson and B.H. George. 2003. Carbon sequestration predictor for land use change in inland areas of New South Wales-background, user notes, assumptions and preliminary model testing. Version 2.0. Research and Development Division State Forests of New South Wales. Sidney. p. 35
- Morris, S.J. and E.A. Paul. 2003. Forest soil ecology and soil organic carbon. In: J.M. Kimble, L.S. Heath, R.A. Birdsey and R. Lal (eds,). The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York. pp. 109-125
- Mun, H.T. and H.T. Joo. 1994. Litter production and decomposition in the Quercus acutissima and Pinus rigida forests. Korean J. Ecol. 17: 345-353
- Park, B.K. and I.S. Lee. 1981. A model for litter decomposition of the forest ecosystem in South Korea. Korean J. Ecol. 4: 38-51
- Persson, H. 1980. Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in Central Sweden. Oikos 34: 77-87 https://doi.org/10.2307/3544552
- Pregitzer, K.S. 2003. Carbon cycling in forest ecosystems with an emphasis on belowground processes. In: J.M. Kimble, L.S. Heath, R.A. Birdsey and R. Lal (eds,). The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. CRC Press, New York. pp. 93-107
- Pyo, J.H., S.U. Kim and H.T. Mun. 2003. A study on the carbon budget in Pinus koreansis plantation. Korean J. Ecol. 26: 129-134 https://doi.org/10.5141/JEFB.2003.26.3.129
- Schlesinger, W.H. 1997. Biogeochemistry: An analysis of global change. Academic Press, San Diego, California
- Son, Y.H., G. Lee and J.Y. Hong. 1994. Soil carbon dioxide evolution in three deciduous tree plantations. J. Kor. Soc. Soil Sic. Fertil. 27: 290-295
- Song, C.Y., K. Chang, K. Park and S. Lee. 1997. Analysis of carbon fixation in natural forests of Quercus mongolica and Quercus variabilis. J. Korean For. Soc. 86: 35-45
- Swift, M.J., O.W. Heal and J.M. Anderson. 1979. Decomposition in terrestrial ecosystems. Studies in Ecology. Vol. 5. Univ. of California Press, Berkley & Los Angeles. 372p
-
Tans, P.P., I.Y. Fung and T. Takahashi. 1990. Observational constraints on the global atmospheric
$CO_2$ budget. Science 247: 1431-1438 https://doi.org/10.1126/science.247.4949.1431 - Vitousek, P.M. 1991. Can planted forests counteract increasing atmopheric carbon dixide? J. Environ. Qual. 20: 348-354 https://doi.org/10.2134/jeq1991.202348x
Cited by
- Belowground Carbon Storage by Stand Age Classes and Regions of Red Pine (Pinus densiflora) and Cork Oak (Quercus variabilis) Stands in Western Gyeongnam province vol.49, pp.1, 2015, https://doi.org/10.14397/jals.2015.49.1.29