• 제목/요약/키워드: 생체흡착

Search Result 122, Processing Time 0.024 seconds

Gold Recovery from Cyanide Solution through Biosorption, Desorption and Incineration with Waste Biomass of Corynebacterium glutamicum as Biosorbent (생체흡착, 탈착 및 회화를 이용한 시안 용액으로부터 금의 회수)

  • Bae, Min-A;Kwak, In-Seob;Won, Sung-Wook;Yun, Yeoung-Sang
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • In this study, we propose two methods able to recover different type of gold from gold-cyanide solutions: biosorption and desorption process for mono-valent gold recovery and biosorption and incineration process for zero-valent gold recovery. The waste bacterial biomass of Corynebacterium glutamicum generated from amino acid fermentation industry was used as a biosorbent. The pH edge experiments indicated that the optimal pH range was pH 2 - 3. From isothermal experiment and its fitting with Langmuir equation, the maximum uptake capacity of Au(I) at pH 2.5 were determined to be 35.15 mg/g. Kinetic tests evidenced that the process is very fast so that biosorption equilibrium was completed within the 60 min. To recover Au(I), the gold ions were able to be successfully eluted from the Au-loaded biosorbent by changing the pH to pH 7 and the desorption efficiency was 91%. This indicates that the combined process of biosorption and desorption would be effective for the recovery of Au(I). In order to recover zero-valent gold, the Au-loaded biosorbents were incinerated. The content of zero-valent gold in the incineration ash was as high as 85%. Therefore, we claim on the basis of the results that two suggested combined processes could be useful to recover gold from cyanide solutions and chosen according to the type of gold to be recovered.

Biosorption of Lead ions onto Laminaria japonica and Kjellmaniella crassifolia : Equilibrium and Kinetic Modelling (Laminaria japonica와 Kjellmaniella crassifolia를 이용한 Pb의 생체흡착 : 흡착속도 및 흡착평형 모델링)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1238-1243
    • /
    • 2005
  • The batch experiments of biosorption were carried out for the removal of lead ion from metal solution using Laminaria japonica and Kjellmaniella crassifolia, two species of marine algaes as biosorbent. We have investigated biosorption kinetics and equilibrium of lead by using marine algaes. We observed that biosorption of lead occurred very rapidly by marine algaes ; the biosorption reached equilibrium less than 2 hr. These experimental data could be accurately described by a pseudo-second-order rate equation, obtaining values between $0.883{\times}10^{-3}$ and $0.628{\times}10^{-3}\;g/mg/min$ for the biosorption rate constant $k_{2,ad}$. It could be described with Langmuir, Redlich-Peterson, and Koble-Corrigan(Langmuir-Freundlich) equation. The biosorption capacity by L. japonica and K. crassifolia were in the sequence of Pb>Cd>Cr>Cu and Pb>Cu>Cd>Cr, respectively. The biosorption capacity of L. japonica were increased with pH increasing.

Removal, Recovery, and Process Development of Heavy Metal by Immobilized Biomass Methods (미생물 고정화법에 의한 중금속 제거, 회수 및 공정개발)

  • Ahn, Kab-Hwan;Shin, Yong-Kook;Suh, Kuen-Hack
    • Journal of Environmental Science International
    • /
    • v.6 no.1
    • /
    • pp.61-67
    • /
    • 1997
  • Heavy metal adsorption by microbial cells is an alternative to conventional methods of heavy metal removal and recovery from metal-bearing wastewater The waste Sac-chuomyces cerevisiae is an inexpensive, relatively available source of biomass for heavy metal biosorption. Biosorption was investigated by free and immobilized-S. cerevisiae. The order of biosorption capacity was Pb>Cu>Cd with batch system. The biosorption parameters had been determined for Pb with free , cells according to the Freundlich and Langmuir model. It was found that the data fitted reasonably well to the Freundlich model. The selective uptake of immobilized-S. cerevisiae was observed when all the metal ions were dissolved in a mixed metals solution(Pb, Cu, Cr and Cd). The biosorption of mixed metals solution by immobilized-cell was studied in packed bed reactor. The Pb uptake was Investigated in particular, as it represents one of the most widely distributed heavy metals in water. We also tested the desorption of Pb from immobilized-cell by us- ing HCI, $H_2SO_4$ and EDTA.

  • PDF

Biosorption and Flotation of Lead and Chromium using Waste Activated Sludge (폐 활성슬러지를 이용한 납과 크롬의 생체흡착 및 부상)

  • Lee, Chang-Han
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.444-450
    • /
    • 2009
  • We have investigated biosorption kinetics and equilibrium of $Pb^2+$ and $Cr^2+$ using waste sludge, and separation efficiency of waste sludge by dissolved air flotation was evaluated in the various A/S ratio. The biosorption capacity and contact time were shown as a simulation of biosorption equilibrium and kinetics models. Biosorption equilibrium of the $Pb^2+$ and $Cr^2+$ onto the waste sludge could be fitted by the Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan equation. The kinetics could be fitted by a pseudo-second-order rate equation more than a pseudo-first-order rate equation. The separation efficiency of waste sludge using DAF was kept above 90%.

Biosorption of Pb and Cr by using Sargassum sagamianum (비틀대모자반, Sargassum sagamianum을 이용한 Pb 및 Cr 생체흡착 및 회수)

  • SUH Kuen-Hack;AHN Kab-Hwan;LEE Hack-Sung;LEE Hwae-Geon;CHO Jin-Koo;HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.4
    • /
    • pp.399-403
    • /
    • 1999
  • Biosorption of Pb and Cr to Sargassum sagamianum was evaluated in the various conditions. An adsorption equilibrium was reached in about 15 min. for Pb and Cr. The uptake capacity was 224.5 mg Pb/g biomass and 77.5 mg Cr/g biomass, respectively. The adsorption parameters for Pb and Cr were determined according to Langmuir and Freundlich model. Biosorption of Pb and Cr was increased with an increase in pH value. Pb and Cr adsorbed by S. sagamianum could be recovered by desorption process with 0.1M HCl, 0.1M $HNO_3$ and 0.1M EDTA and the efficiency of Pb desorption was above $90\%$, whereas the efficiency of Cr desorption was below $51\%$.

  • PDF

Effect of the Removal Efficiency of Heavy Metals by the EPS Production of Bacillus Microorganisms (환경변화에 따른 바실러스 미생물의 EPS 생성이 중금속 제거 효율에 미치는 영향)

  • Son, Han-Hyung;Kim, Pan-Soo;Lee, Sang-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.309-312
    • /
    • 2006
  • 최근에는 산업의 발전에 따라 다종 다양한 형태의 중금속이 이용되고 있지만 처리공정의 효율상의 한계성 때문에 미량의 중금속이 배출되어 생태계의 치명적인 위협요소로 부각되고 있다. 중금속이 포함된 폐수는 일반적으로 여러 가지 방법이 있지만 생체물질을 이용한 생체흡착에 대한 연구 및 공정 개발이 활발히 이루어지고 있다. 생체흡착은 중금속이 생물체 표면이나 내부로 물리 화학 및 생물학적 상호작용에 의한 이온교환, 흡착등 다양한 기작에 의해 수용액으로부터 중금속이 제거되는 것이다. 본 연구에서 바실러스에 의한 EPS 물질을 추출하였으며 포자화 전과 후의 EPS를 이용하여 중금속제거 실험을 하였다. EPS 물질은 Protein이 Carbohydrate보다 많은 함량을 보였으며 중금속 제거는 포자화 전보다 포자화 후의 EPS가 더 많이 제거되는 것으로 나타났다.

  • PDF

Optimization of Manufacturing Method for a Fiber Type of Biosorbent from Sludge Waste (폐슬러지로부터 섬유형 생체흡착제 제조방법의 최적화)

  • Seo, Ji Hae;Kim, Namgyu;Park, Munsik;Lee, Sunkyung;Park, Donghee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.641-647
    • /
    • 2014
  • In this study, sludge waste which has a difficulty in treating it was used to manufacture a fiber type of biosorbent. To solve the problems such as the release of organic pollutants and the difficulty in separating solid from treated water, entrapment method using Ca-alginate was used to immobilize sludge waste. Considering ease of manufacture as well as improvement of adsorptive ability, the biosorbent was manufactured in the form of fiber type. Optimum immobilization condition for minimizing the amount of alginate used and maximizing the performance of biosorbent was determined to be 10 g/L alginate concentration, 40 g/L sludge concentration, and 0.3-0.4 mm fiber diameter. The maximum Cd(II) uptake of the biosorbent was 60.73 mg/g. Pseudo-second-order kinetic model and Langmuir isotherm model adequately described the dynamic and equilibrium behaviors of Cd(II) biosorption onto the biosorbent, respectively. In conclusion, sludge waste generated from wastewater treatment process is a cheap raw material for the manufacture of biosorbent which can be used to remove toxic heavy metals from industrial wastewaters efficiently.

Biosorption and Desorption of Pb by Using Sargassum sagamianum (해조류, Sargassum sagamianum을 이용한 Pb 흡착 및 탈착)

  • Seo, Geun-Hak;An, Gap-Hwan;Gong, In-Su
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.611-615
    • /
    • 1999
  • Biosorption of Pb was evaluated for Sargassum sagamianum. An adsorption equilibrium was reached in about 1 hr. The uptake capacity of Pb was 224.5 mg Pb/G biomass. The adsorption parameters for Pb were determined according to Langmuir and Frueundlich model. With increasing pH, more negative sites are becoming available for adsorption of Pb. When Ca and Mg concentration increases in Pb solution, Pb was selectively adsorbed. The Pb adsorbed by S. sagamianu could be desorbed by desorption process and the efficiency from 0.1M HCl, 0.1M HNO$_3$and 0.1M EDTA was above 95%. S. Sagamianum was reused 6 times and the total uptake was 736.8 mg Pb/g biomass.

  • PDF

(I) Synthesis of model microspheres and adsorption study of bovine serum albumine. (모델 microspheres의 합성 및 bovine serum albumins의 흡착 연구)

  • Kim, Jung-Hyeon;Kim, U-Sik
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.157-160
    • /
    • 1992
  • 표면에 여러 가지 기능성기를 가지는 microspheres는 immunoassay, drug delivery system, cell separation등 의용공학분야에 응용이 기대되고 있다. 이들 분야의 응용을 위하여 유화제를 사용하지 않으면서, 기존의 회분식, 반회분식, seed 중합법등의 문제점을 극복한 two stage shot growth technique올 개발하여 여러 가지 기능성기가 표면에 도입된 microspheres를 제조하였으며, 응용의 전단계로서 이들 microspheres에 대한 모델 단백질(BSA)의 흡착실험을 pH, 기능 성기의 종류와 양, BSA농도를 변수로 행하여 최대 흡착량을 보이는 조건을 결정하였다.

  • PDF