교대로 간헐 포기되는 부직포 여과막 생물반응조에서 C/N비가 유기물 및 질소 제거효율에 미치는 영향

Effects of C/N Ratio on Removal of Organic Matter and Nitrogen in Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactor

  • 안윤찬 (인하대학교 환경토목공학부) ;
  • 배민수 (인하대학교 환경토목공학부) ;
  • 이종호 (인하대학교 환경토목공학부) ;
  • 조윤경 (위스콘신대학교 토목환경공학부) ;
  • 조광명 (인하대학교 환경토목공학부)
  • Ahn, Yun-Chan (School of Environmental & Civil Engineering, Inha University) ;
  • Bae, Min-Su (School of Environmental & Civil Engineering, Inha University) ;
  • Lee, Jong-Ho (School of Environmental & Civil Engineering, Inha University) ;
  • Cho, Yun-Kyung (Department of Civil and Environmental Engineering, University of Wisconsin-Madison) ;
  • Cho, Kwang-Myeung (School of Environmental & Civil Engineering, Inha University)
  • 발행 : 2005.05.31

초록

본 연구에서는 2기의 부직포 여과막 생물반응조를 60분/60분의 포기/비포기 시간비에서 교대로 포기시키고 폐수를 주입시키면서 C/N비(COD/TKN)를 10에서 2까지 점감시켜 유입수의 C/N비가 유기물 및 질소 제거효율에 미치는 영향을 파악하였다. 실험에 사용된 폐수는 I시의 음식물 쓰레기 처리장에서 배출되는 침출수를 COD가 약 2,500 mg/L 정도 되도록 20배 희석시킨 것으로, C/N비는 염화암모늄($NH_4Cl$)을 첨가하여 조정하였다. 실험결과, $10{\sim}3$의 C/N비에서는 유출수의 COD 및 BOD 농도가 각각 $40{\sim}54\;mg/L$$1{\sim}4\;mg/L$로 나타났으며, 처리수의 SS농도는 항상 2.0 mg/L 미만으로 유지되었다. $10{\sim}5$의 C/N비에서는 96%의 총질소 제거효율를 보였으나 3 및 2.8의 C/N비에서는 총질소 제거효율이 각각 83% 및 81%로 낮아졌다. 2 및 2.6의 C/N비에서는 암모니아 독성에 의하여 처리수의 수질이 악화되었다. C/N비가 5에서 2.6으로 낮아질수록 질산화 미생물 분율이 10%에서 20%로 증가하였다. 알칼리도 소비량은 $10{\sim}5$의 C/N비에서는 $3.12{\sim}3.49\;g$ alkalinity/g T-N removed로 이론적인 값 3.57 g alkalinity/g T-N removed보다 낮았으나, 3 및 2.8의 C/N비에서는 4.63 및 4.87 g alkalinity/g T-N removed로 나타났다.

This study was performed to investigate the effects of influent C/N ratio on the removal of organic and nitrogenous compounds by two nonwoven fabric filter bioreactors. The reactors were alternately aerated at an aeration/nonaeration period ratio of 60 min/60 min, and fed with wastewater only during nonaeration period. The influent C/N ratio (COD/TKN) was gradually reduced from 10 to 2. The influent was prepared by diluting the leachate from a foodwaste treatment facility in I city so that the COD concentration could be about 2,500 mg/L. The C/N ratio of the wastewater was adjusted by adding ammonium chloride. The results of the experiment showed that the COD and BOD concentration of the effluent was $40{\sim}54\;mg/L$ and $1{\sim}4\;mg/L$, respectively at the C/N ratios of $10{\sim}3$, and the effluent SS concentration was always below 2.0 mg/L. The T-N removal efficiencies were 96% or higher at C/N ratios of $10{\sim}5$, but decreased to 83% and 81%, respectively at the C/N ratios of 3 and 2.8. At the C/N ratios of 2.6 and 2, the effluent quality deteriorated due to ammonia toxicity. The fraction of nitrifying microorganism in the reactors increased from 10% to 20% as the C/N ratio decreased from 5 to 2.6. Alkalinity consumed were $3.12{\sim}3.49\;g$ alkalinity/g T-N removed at the C/N ratios of $10{\sim}5$, which are lower than the theoretical value of 3.57. However, the ratio increased to 4.63 and 4.87 g alkalinity/g T-N removed, respectively at the C/N ratios of 3 and 2.8.

키워드

참고문헌

  1. Buisson, H., Cote, P., Praderie, M., and Paillard, H., 'The use of immersed membranes for upgrading wastewater treatment plants,' Water Sci. Technol., 37(9), 89-95(1988)
  2. Roy, C., Auger, R., and Chenier, R., 'Use of nonwoven textile in intermittent filter,' Water Sci. Technol., 38(3), 159-166(1998)
  3. Palmeira, E. M. and Gardoni, M. G., 'Drainage and filtration properties of non-woven geotextiles under confinement using different experimental techniques,' Geotextiles and Geomembranes, 20(2), 97-115(2002) https://doi.org/10.1016/S0266-1144(02)00004-3
  4. 조광명, '여과막 활성슬러지공법에 의한 유기성 폐수의 처리,' 대한토목학회 논문집, 8(2), 119-133(1980)
  5. 임상호, 배민수, 조광명, '부직포 여과막 생물반응조를 이용한 하수의 처리,' 한국물환경학회지 19(1), 99-107(2003)
  6. Collivignarelli, C. and Bertanza, G., 'Simultaneous nitrification - denitrification processes in activated sludge plants : performance and applicability,' Water Sci. Technol., 40(4-5), 187-194(1999)
  7. 황도연, 강복춘, 조광명, '간헐 폭기식 부직포 여과막 생물반응조에서 폭기/비폭기 시간비가 하수의 유기물 및 질소 제거에 미치는 영향,' 대한환경공학회지, 25(2), 258 - 266(2003)
  8. 이종호, 조광명, '교차 간헐 폭기식 부직포 여과막 생물반응조를 이용한 하수의 유기물 및 질소제거,' 대한환경공학회지 26(2), 184-190(2004)
  9. Carley, B. N. and Mavinic, D. S., 'The effects of external carbon loading on nitrification and denitrification of a high-ammonia landfill leachate,' J.- Water Pollut. Control Fed., 63(1), 51-59(1991)
  10. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington D.C., USA(1998)
  11. 환경부 고시 제 96-32호, 수질환경오염공정시험법(1996)
  12. Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., and Srinath, E. G., 'Inhibition of nitrification by ammonia and nitrous acid,' J.- Water Pollut. Control Fed., 48(5), 835 - 852(1976)
  13. Grady, C. P., Daigger, G. T., and Lim, H. C., Biologial Wastewater Treatment, Marcel Dekker Inc., pp. 506-507 (1999)
  14. Carrera, J., Vicent, T., and Lafuente, J., 'Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater,' Process Biochemistry, 39(12), 2035 - 2041(2004) https://doi.org/10.1016/j.procbio.2003.10.005
  15. Tseng, C. C., Potter, T. G., and Koopman, B., 'Effect of influent chemical oxygen demand to nitrogen ratio on a partial nitrification/complete denitrification process,' Water Res., 32(1), 165 -173(1998) https://doi.org/10.1016/S0043-1354(97)00195-4
  16. Skrinde, J. R. and Bhagat, S. K., 'Industrial wastes as carbon sources in biological denitrification,' J. Water Pollut. Control Fed., 54(4), 370-377(1982)
  17. Hall, E. R. and Murphy, K. L., 'Estimation of nitrifying biomass and kinetics in wastewater,' Water Res., 14(4), 297-304(1980) https://doi.org/10.1016/0043-1354(80)90075-5
  18. Copp, J. B. and Murphy, K. L., 'Estimation of the active nitrifying biomass in activated sludge,' Water Res., 29(8), 1855-1862(1995) https://doi.org/10.1016/0043-1354(94)00347-A
  19. Katsogiannis, A. N., Kornaros, M., and Lyberatos, G., 'Long-term effect of total cycle time and aerobic/anoxic phase ratio on nitrogen removal in a sequencing batch reactor,' Water Environ. Res., 74(4), 324-337(2002) https://doi.org/10.2175/106143002X140080
  20. You, S. J., Hsu, C. L., Chuang, S. H., and Ouyang, C. F., 'Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and $A^2$O systems,' Water Res., 37(10), 2281-2290(2003) https://doi.org/10.1016/S0043-1354(02)00636-X
  21. U.S. EPA., Manual Nitrogen Control, Washington, D.C. (1993)
  22. Rosenberger, S. and Kraume, M., 'Filterability of activated sludge in membrane bioreactors,' Desalination, 146, 373 - 379(2002) https://doi.org/10.1016/S0011-9164(02)00515-5
  23. WEF and ASCE, Design of Municipal Wastewater Treatment Plants, Vol. II, 4th ed.(1998)
  24. Jenkins, D., Richard, M. G., and Daigger, G. T., Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2nd ed., Lewis Publishers, Chelsea., MI(1993)
  25. Pujol, R., Duchene, P., Schetrite, S., and Canler, J. P., 'Biological foams in activated sludge plants; characterization and situation,' Water Res., 25(11), 1399-1404 (1991) https://doi.org/10.1016/0043-1354(91)90118-A
  26. Le-Clech, P., Jefferson, B., and Judd, S. J., 'Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor,' J. Membr. Sci., 218(1-2), 117-129(2003) https://doi.org/10.1016/S0376-7388(03)00164-9
  27. Bouhabila, E. H., Aim, R. B., and Bouisson, H., 'Fouling characterisation in membrane bioreactors,' Separation Purification Technology, 22-23, 123-132(2001)