References
- R. P. Agarwal, Difference equations and inequalities, Monographs and Textbooks in Pure and Applied Mathematics, vol. 155, Theory, Methods, and Applications, Marcel Dekker Inc., New York, 1992
- G. D. Akrivis, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math. 63 (1992), no. 1, 1-11 https://doi.org/10.1007/BF01385844
- G. D. Akrivis, Finite element discretization of the Kuramoto-Sivashinsky equation, Numerical Analysis and Mathematical Modelling, Banach Center Publ., vol. 29, Polish Acad. Sci., Warsaw, 1994, pp. 155-163
- S. M. Choo and S. K. Chung, Conservative nonlinear difference scheme for the Cahn-Hilliard equation, Comput. Math. Appl. 36 (1998), no. 7, 31-39
- S. M. Choo, S. K. Chung, and K. I. Kim, Conservative nonlinear difference scheme for the Cahn-Hilliard equation. II, Comput. Math. Appl. 39 (2000), no. 1- 2, 229-243 https://doi.org/10.1016/S0898-1221(99)00326-0
- S. M. Choo, S. K. Chung, and Y. J. Lee, A Conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient, Appl. Numer. Math. 51 (2004), no. 2-3, 207-219 https://doi.org/10.1016/j.apnum.2004.02.006
- C. M. Elliott and D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math. 38 (1987), no. 2, 97-128 https://doi.org/10.1093/imamat/38.2.97
- C. M. Elliott and D. A. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal. 26 (1989), no. 4, 884-903 https://doi.org/10.1137/0726049
- C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal. 96 (1986), no. 4, 339-357
- D. Furihata, A stable and conservative finite difference scheme for the Cahn- Hilliard equation, Numer. Math. 87 (2001), no. 4, 675-699 https://doi.org/10.1007/PL00005429
-
D. Furihata,, Finite difference schemes for
$\frac{{\partial}u}{{\partial}t}=(\frac{{\partial}}{{\partial}x})^{\alpha}\frac{{\partial}G}{{\partial}u}$ . J. Comput. Phys. 181-205 - J. C. Lopez Marcos and J. M. Sanz-Serna, Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability, IMA J. Numer. Anal. 8 (1988), no. 1, 71-84 https://doi.org/10.1093/imanum/8.1.71
- A. V. Manickam, K. M. Moudgalya, and A. K. Pani, Second-order splitting combined with orthogonal cubic spline collocation method for the Kuramoto- Sivashinsky equation, Comput. Math. Appl. 35 (1998), no. 6, 5-25 https://doi.org/10.1016/S0898-1221(98)00013-3
- R. E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, New Jersey, 2000
- T. Ortega and J. M. Sanz-Serna, Nonlinear stability and convergence of finite- difference methods for the 'good' Boussinesq equation, Numer. Math. 58 (1990), no. 2, 215-229 https://doi.org/10.1007/BF01385620
- E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 17 (1986), no. 4, 884-893 https://doi.org/10.1137/0517063
Cited by
- Weak solutions for a class of metaparabolic equations vol.87, pp.8, 2008, https://doi.org/10.1080/00036810802369223
- Nonstandard finite difference methods: recent trends and further developments vol.22, pp.6, 2016, https://doi.org/10.1080/10236198.2016.1144748