DOI QR코드

DOI QR Code

Hydrogen Absorption Properties of Nanocrystalline Zr57V36Fe7 Getter alloy

나노결정형 Zr57V36Fe7 게터합금의 수소흡수특성

  • Park Je-Shin (Minerals and materials processing Division, Materials Development Group Korea Institute of Geoscience, Mining and Materials) ;
  • Suh Chang-Youl (Minerals and materials processing Division, Materials Development Group Korea Institute of Geoscience, Mining and Materials) ;
  • Kim Won-Baek (Minerals and materials processing Division, Materials Development Group Korea Institute of Geoscience, Mining and Materials)
  • 박제신 (한국지질자원연구원 자원활용소재연구부 소재개발연구실) ;
  • 서창열 (한국지질자원연구원 자원활용소재연구부 소재개발연구실) ;
  • 김원백 (한국지질자원연구원 자원활용소재연구부 소재개발연구실)
  • Published : 2005.12.01

Abstract

The hydrogen sorption speed of $Zr_{57}V_{36}Fe_7$ nanocrystalline and amorphous alloys was evaluated at room temperature. Nanocrystalline alloys of $Zr_{57}V_{36}Fe_7$ were prepared by planetary ball milling. The hydrogen sorption speed of nanocrystalline alloys was higher than that of the amorphous alloy. The enhanced sorption speed of nanocrystalline alloys was explained in terms of surface oxygen stability which has been known to retard the activation of amorphous alloys. The retardation can be reduced by formation of nanocrystals, which results in the observed increase in sorption properties.

Keywords

References

  1. B. K. Singh, A. K. Singh, M. A. Imam and O. N. Srivastava: Journal of Alloys and Compounds, 354 (2003) 315 https://doi.org/10.1016/S0925-8388(03)00025-2
  2. Rui Guo, Li-Xin Chen, Yong-Quan Lei, Shi-Qun Li, Yue-Wu Zeng and Qi-Dong Wang: Journal of Alloys and Compounds, 358 (2003) 223 https://doi.org/10.1016/S0925-8388(03)00073-2
  3. X. B. Yu, Z. Wu, B. J. Xia and N. X. Xu: Journal of Alloys and Compounds, 372 (2004) 272 https://doi.org/10.1016/j.jallcom.2003.09.153
  4. Huajun Yuan, Yue An, Guohua Xu and Changping Chen: Materials Chemistry and Physics, 83 (2004) 340 https://doi.org/10.1016/j.matchemphys.2003.10.015
  5. X. B. Yu, Z. Wu and N. X. Xu: Physica B, 344 (2004) 456 https://doi.org/10.1016/j.physb.2003.11.002
  6. J.-K. Chang, D.-N. Simon Shong and W.-T. Tsai: Materials Chemistry and Physics, 83 (2004) 361 https://doi.org/10.1016/j.matchemphys.2003.10.011
  7. Hongge Pan, Yunfeng Zhu, Mingxia Gao, Yongfeng Liu, Rui Li, Yongquan Lei and Qidong Wang: Journal of Alloys and Compounds, 364 (2004) 271 https://doi.org/10.1016/S0925-8388(03)00523-1
  8. X. B. Yu, Z. Wu, B. J. Xia and N. X. Xu: Journal of Alloys and Compounds, 375 (2004) 221 https://doi.org/10.1016/j.jallcom.2003.11.027
  9. Rong Li, Jianmin Wu, Shaoxiong Zhou and Xinlin Wang: Journal of Alloys and Compounds, 363 (2004) 292
  10. K. Derbyshire: Solid State Technol., 37 (1994) 55 https://doi.org/10.1016/0038-1101(94)90104-X
  11. Kenji Ichimura, Naoya Inoue, Kuniaki Watanabe and Toyosaburo Takeuchi: J. Vac. Sci. Technol., A2 (1984) 1341 https://doi.org/10.1116/1.572406
  12. C. Benvenuti and P. Chiggiato: J. Vac. Sci. Technol., A14 (1996) 1341
  13. B. Ferrario, A. Figini and M. Borghil: Vacuum, 35 (1984) 13 https://doi.org/10.1016/0042-207X(85)90070-3
  14. Surya Parkash Garg: Earl A Gulbransen and P Vijendranl, Vacuum, 40 (1990) 275 https://doi.org/10.1016/0042-207X(90)90043-X
  15. C. Benvenuti: Vacuum, 44 (1993) 511 https://doi.org/10.1016/0042-207X(93)90084-N
  16. H. F. Dylla, J. Cecchi and M. Ulrickson: J. Vac. Sci. Technol., 18 (1981) 1111 https://doi.org/10.1116/1.570850
  17. C. Boffito, B. Ferrario P. Della Porta and L. Rosail: J. Vac. Sci. Technol., 18 (1981) 1117 https://doi.org/10.1116/1.570852
  18. R. J. Knize, J.L. Cecchi and H. F. Dylla: J. Vac. Sci. Technol., 20 (1982) 1135 https://doi.org/10.1116/1.571588
  19. Kenji Ichimura, Naoya Inoue, Kuniaki Watanabe and Toyosaburo Takeuchil: J. Nuclear Materials, 128 (1984) 876 https://doi.org/10.1016/0022-3115(84)90474-4
  20. J. S. Park, D. J. Lee, D. S. Kil and W. B. Kim: J. the Korean Society for Geosystem Engineering., 41 (2004) 496
  21. J. S. Park, C. Y. Suh and W. B. Kim: Korean J. of Materials Research, 15 (2005) 388 https://doi.org/10.3740/MRSK.2005.15.6.388
  22. Y. Iijima and K. Hirano: Bull. JIM, 14 (1975) 599
  23. J. O. Strom-Olsen, Y. Zhao, D. H. Ryan, Y. Huai and R. W. Cochrane: J. Less-Common Met., 172-179 (1991) 922
  24. X. G. Li, T. Otahara, S. Takahashi, T. Shoji, H. M. Kimura and A. Inoue: Journal of Alloys and Compounds, 279 (2000) 303 https://doi.org/10.1016/S0925-8388(99)00614-3
  25. D. Shaltiel: Less-Common Met., 73 (1980) 329 https://doi.org/10.1016/0022-5088(80)90326-4
  26. J. S. Park, C. Y. Suh and W. B. Kim: Korean J. of Materials Research, 15 (2005) 1
  27. K. Cheistmann: Surf. Sci. Rep., 9 (1988) 1 https://doi.org/10.1016/0167-5729(88)90009-X
  28. D. J. Lee, W. Kim, S. R. In, J. Y. Im and K. B. Kim: J. the Korean Vacuum Society, 14 (2005) 1
  29. M. M. Gunter, D. Herein, R. Schumacher, G. Weinberg and R. Schogl: J. Vac. Sci. Technol., A16 (1998) 3526
  30. W. B. Kim, D. J. Lee, J. S. Park, C. Y. Suh and J. C. Lee: Korean J. of Materials Research, 15 (2005) 79 https://doi.org/10.3740/MRSK.2005.15.2.079
  31. S. R. In, M. Y. Park and K. S.: Jung, J. the Korean Vacuum Society, 13 (2004) 47
  32. B. Ferrario: Vacuum, 47 (1996) 363 https://doi.org/10.1016/0042-207X(95)00252-9
  33. W. V. Lampert, K. D. Rachocki, B. C. Lamartine and T. W. Haas: J. Vac. Sci. Technol., 18 (1981) 1121 https://doi.org/10.1116/1.570853