Abstract
Many daily appliances for examples copiers, printers and ATMs contain the media transport system (MTS) and the slippage between the medium in the MTS deteriorates the performance quality of the whole system. The slippage of the medium in the MTS is affected by many parameters including the friction coefficient between the feeding rollers and the medium, the velocity of the feeding rollers, and the normal force exerted on the medium by feeding rollers. This paper focuses on the effect of the normal force on the slippage while the medium is being fed. For this purpose, we developed a two-dimensional simulation model for a paper feeding system. Using the simulation model, we calculated the slippage of the paper for different normal forces. We have also constructed a testbed of the paper feeding system to verify the simulation results. Experimental results are compared with the simulation results.