Neural Networks을 이용한 Reactive Ion Etching 공정의 실시간 오류 검출에 관한 연구

Real-time Fault Detection and Classification of Reactive Ion Etching Using Neural Networks

  • 발행 : 2005.11.01

초록

본 논문은 정수장에서 사용하는 응집제의 종류를 결정하기 위한 시스템 개발에 관한 내용이다. 정수장은 여러 단위 처리장으로 구성되며, 불순물을 제거하기 위하여 혼화지에서 응집제를 주입하여 침전을 시킨다. 현재까지 응집제 결정을 위해 Jar-test를 이용하는데, 이 방법은 사람의 주관적인 판단에 의존하므로 실험 오차가 발생할 수 있다. 특히 정수장의 자동화를 위한 시스템 개발에서 가장 큰 걸림돌로 작용하고 있다. 본 논문은 이러한 문제점을 해결하기 위하여 로드맵에 기초한 데이터마이닝 기법을 이용하여 응집제를 선택할 수 있는 제어기를 개발하였다. 제어 규칙은 클러스터링 기법으로 도출하였는데, 군집의 초기 값과 개수는 통계적 지수 값을 사용하여 결정하였다.

In coagulant control of water treatment plants, rule extraction, one of datamining categories, was performed for coagulant control of a water treatment plant. Clustering methods were applied to extract control rules from data. These control rules can be used for fully automation of water treatment plants instead of operator's knowledge for plant control. To perform fuzzy clustering, there are some coefficients to be determined and these kinds of studies have been performed over decades such as clustering indices. In this study, statistical indices were taken to calculate the number of clusters. Simultaneously, seed points were found out based on hierarchical clustering. These statistical approaches give information about features of clusters, so it can reduce computing cost and increase accuracy of clustering. The proposed algorithm can play an important role in datamining and knowledge discovery.

키워드

참고문헌

  1. Michael D. Baker, Christopher, Himmel, and Gary S. May 'Time Series Modeling of Reactive Ion Etching Using Neural Network,' IEEE Transactions on Semiconductor Manufacturing, Vol.8, No.1, pp.62-71, Feb 199 [5] https://doi.org/10.1109/66.350758
  2. Sylvie Bosch-charenay, Jiazhan Xu, John Haigis, Peter A. Resenthal, Peter Solomon, and James M. Bustillo, 'Real-time etch-depth measurements of MEMS devices,' Journal of Microelectromechanical systems, Vol.110, No.2, pp.111-117, April, 2002
  3. T. J. Knight, D. W. Greve, X. Cheng and B. H. Krogh, 'Real-time multivariable control of PECVD silicon nitride film properties,' IEEE Transaction on Semiconductor Manufacture, Vol.10, No.1, pp.137-145, February, 1997 https://doi.org/10.1109/66.554500
  4. T.L Vincent, P.P. Khargonekar and F. L. Terry, Jr., 'An extended Kalman filtering-based method of processing reflectometry data for fast In-Situ Rate Measurements,' IEEE Transaction on Semiconductor Manufacture, Vol.10, No.1, pp.137-145, February, 1997 https://doi.org/10.1109/66.554500
  5. P. J. O'Sulivan, J. Martinez, J. Durham and S. Felker, 'Using UPM for real-time multivariate modeling of semiconductor manufacturing equipment,' SEMATECH APC/AEC Workshop VII, New Oeleans, Louisiana, pp.5-8, November, 1995
  6. Sang Jeen Hong and Gary S. May, 'Neural Network-Based Real-Time Malfunction Diagnosis of Reactive Ion Etching Using In Situ Metrology Data,' IEEE Transactions on semiconductor manufacturing, VOL. 17, NO.3, AUGUST 2004
  7. 김 대수, '신경망 이론과 응용(I)', 하이테크정보, 1993
  8. Chein-I Chang and Qian Du, 'Interference and Noise-Adjusted Principal Components Analysis,' IEEE Transactions on geodcience and remote sensing, VOL. 37, NO. 5, SEPTEMBER 1999