물 흡수에 따른 fiber reinforced composite $(Fibrekor^{(R)})$의 굽힘 특성 변화

Flexural characteristic changes of fiber reinforced composite $(Fibrekor^{(R)})$ according to water absorption

  • 김석범 (연세대학교 치과대학 교정학교실) ;
  • 김민정 (연세대학교 치과대학 교정학교실) ;
  • 김경호 (연세대학교 치과대학 교정학교실) ;
  • 최광철 (연세대학교 치과대학 교정학교실)
  • Kim, Sueck-Bum (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Min-Jeong (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Kyung-Ho (Department of Orthodontics, College of Dentistry, Yonsei University) ;
  • Choy, Kwangchul (Department of Orthodontics, College of Dentistry, Yonsei University)
  • 발행 : 2005.10.01

초록

보철이나 수복 영역에서 재료 자체의 기계적 특성을 강화하기 위해 많이 사용되어 오던 fiber reinforced composite (FRC)는 최근 교정 영역까지 그 사용이 확대되고 있다 이 연구의 목적은 silica glass fiber로 강화된 FRC (FibreKor. Jeneric/pentron Inc., Wallingford, U. S.A.)를 다양한 기간 동안 물에 저장하였을 때 물 흡수가 FRC의 굽힘 특성에 미치는 영향을 알아보고자 함이었다. 시편은 임상에서 적응하는 원형, (직사)각형의 두 가지 형태를 기준으로 plasma arc light를 이용하여 광중합하여 제작하였다. 각형 원형 각각 5개의 시편을 실은(평균 $23^{\circ}C$)의 증류수 안에 0시간. 1시간. 1일. 1주, 15일 1개월, 3개월의 기간 동안 보관한 후 torque tester를 이용하여 굽힘 시험을 시행하였다 굽힘 강성(flexural stiffness)은 24시간 후에 원형의 경우 58%, 각형의 경우 25%로 감소했으며 3개월 후에는 각각 28%, 19%의 실험 전 상태의 강성을 나타냈다. 항복 굽힘 모멘트(yield flexural moment. $3^{\circ}$ offset)는 24시간 후에 원형의 경우 45% 각형의 경우 75%로 감소했으며 3개월 후에는 실험 전 항복 굽힘 모멘트의 29%, 60%로 각각 감소하였다 파절 굽힘 모멘트(ultimate flexural moment)는 24시간 후에 원형의 경우 30% 각형의 경우 75%로 감소했으며 3개월 후에는 실험 전 값의 25%, 37%로 각각 감소하였다 이상의 실험을 통하여 FibreKor는 물에 보관 시 초기에 굽힘 강성이 급격히 저하됨을 알 수 있었다. 따라서 수분에 대한 굽힘 강도 증가를 위한 연구가 향후 필요할 것이다.

Fiber reinforced composite (FRC) has been widely used in operative and prosthetic fields of dentistry and its use is expanding into the orthodontic field. The purpose of this study was to examine the changes of flexural properties of FRC reinforced with silica glass fiber (FibreKor, Jeneric/Pentron Inc.. Wallingford. U.S.A.) according to the duration of water absorption. Specimens were grouped according to their shape as round and rectangular cross sections, and were immersed in distilled water at room temperature $(23^{\circ}C)$ for 0 hour 1 hour 1 week. 15 days, 1 mouth and 3 mouths. The number of specimens was 5 for each duration and bending test was done using a torque tester The flexural stiffness after 24 hour water immersion was reduced to 59% for round specimens and 25% for rectangular specimens and after 3 mouths of water immersion it was reduced to 29% and 19% stiffness of the 0 hour-specimen respectively Yield flexural moment after 24 hour water immersion was reduced to 45%for round specimens and 76% for rectangular specimens and after 3 months of water immersion it was reduced to 29% and 60% stiffness of the 0 hour-specimen respectively Ultimate flexural moment after 24 hour water immersion was reduced to 35% for round specimens and 76% for rectangular specimens and after 3 mouths of water immersion it was reduced to 25% and 37% stiffness of 0 hour-specimen respectively. Those results suggested that the flexural stiffness of FibreKor decreased greatly after initial water immersion. Consequently, further research for the maintenance of strength against water will be necessary

키워드

참고문헌

  1. Tayton K, Johnson-Nurse C, McKibbin B, Bradley J, Hastings G. The use of semi-rigid carbon-fibre-reinforced plastic plates for fixation of human fractures. Results of preliminary trials. ultimates. J Bone Joint Surg Br. 1982;64:105-11
  2. Smith DC. Recent developments and prospects in dental polymer. J Prosthet Dent 1962;12:1066 https://doi.org/10.1016/0022-3913(62)90162-2
  3. Goldberg AJ, Burstone CJ, The use of continuous fiber reinforcement in dentistry. Dent Mater 1992;8:197-202 https://doi.org/10.1016/0109-5641(92)90083-O
  4. Goldberg AJ, Burstone CJ, Hadjinikolaou I, Jancar J, Screening of matrices and fibers for reinforced thermoplastics intended for dental applications. J Biomed Mater Res 1994;28:167-73 https://doi.org/10.1002/jbm.820280205
  5. Freilich MA, Karmaker AC, Burstone CJ, Goldberg AJ, Development and clinical applications of a light-polymerized fiber-reinforced composite. J Prosthet Dent 1998;80:311-8 https://doi.org/10.1016/S0022-3913(98)70131-3
  6. Burstone CJ, Kuhlberg AJ, Fiber-Reinforced Composites in Orthodontics. J Clin Orthod 2000;34:271-9
  7. Karaman AI, Kir N, Belli S. Four applications of reinforced polyethylene fiber material in orthodontic practice. Am J Orthod Dentofacial Orthop 2002;121:650-4 https://doi.org/10.1067/mod.2002.123818
  8. Cal NE, Hersek N, Sahin E. Water sorption and dimensional changes of denture base polymer reinforced with glass fibers in continuous unidirectional and woven form. lnt J Prosthodont 2000; 13:487-93
  9. Ekstrand K, Ruyter IE, Wellendorf H. Carbon/graphite fiber reinforced poly (methyl methacrylate): properties under dry and wet conditions. J Biomed Mater Res 1987;21:1065-80 https://doi.org/10.1002/jbm.820210902
  10. Meyer MR, Friedman RJ, Delschutte H Jr, Latour RA Jr. Long-term durtbility of the interface in FRP composites after exposure to simulated physiologic saline environments. J Biomed Mater Res 1994;28:1221-31 https://doi.org/10.1002/jbm.820281012
  11. Vallittu PK. Effect of 180-Week water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont 2000:13:334-9
  12. Miettinen VM, Vallittu PK., Docent DT. Water sorption and solubility of glass fiber-reinforced denture polymethyl methacrylate resin. J Prosthet Dent 1997:77:531-4 https://doi.org/10.1016/S0022-3913(97)70147-1
  13. Parr GR, Rueggeberg FA. In vitro hardness, water sorption, and resin solubility of laboratory-processed and autopolyrnerized long-term resilient denture liners over one year of water storage. J Prosthet Dent 2002:88:139-44 https://doi.org/10.1067/mpr.2002.127399
  14. Karmaker A, Prasad A. Effect of design parameters on the flexural properties of fiber-reinforced composites. J Mater Sci letter 2000:19:663-665 https://doi.org/10.1023/A:1006754426314
  15. Burstone CJ, Qin B, Morton JY. Chinese NiTi wire-a new orthodontic alloy. Am J Orthod 1985:87:445-52 https://doi.org/10.1016/0002-9416(85)90083-1
  16. 최광철, 김경호, 박영철, 강창수. 교정용 와이어의 비틀림 모멘트. 대치교정지 2000:30:467-73
  17. Yoshikawa DK, Burstone CJ, Goldberg AJ, Morton J. Flexure modulus of orthodontic stainless steel wires. J Dent Res 198;60:139-45
  18. Goldberg AJ, Burstone CJ, Koenig HA. Plastic deformation of orthodontic Wires. J Dent Res 1983;62:1016-20 https://doi.org/10.1177/00220345830620090401
  19. Burstone CJ, Goldberg AJ. Maximum forces and deflections from orthodontic appliances. Am J Orthod 1983;84:95-103 https://doi.org/10.1016/0002-9416(83)90173-2
  20. Vallittu PK, Ruyter IE, Ekstrand K. Effect of water storage on the flexural properties of E -glass and silica fiber acrylic resin composite. lnt J Prosthodont 1998;1:340-50
  21. Jancar J. Dibenedetto AT, Goldberg AJ. Thermoplastic fiberreinforced composites for dentistry. Part II. Effects of moisture on flexural properties of unidirectional composites. J Mater Sci 1993;4:562-8
  22. Imai T, Watari F, Yamagata S, Kobayashi M, Nagayama K. Nakamura S. Effects of water immersion on mechanical properties of new esthetic orthodontic wire. Am J Orthod Dentofacial Orthop 1999; 116:533-8 https://doi.org/10.1016/S0889-5406(99)70185-X