참고문헌
- Debler, W.R. (1959). 'Stratified flow into a line sink' ASCE, J. Eng. Mech Diu., pp. 51-65
- Fischer, H.B., List, E.J., Koh, R.C.Y., Imberger, J. and Brooks, N.H (1979). Mixing in Inland and Coastal Water. Academic Press, New York
- Forbes, L.K. and Hocking, G.C. (2003). 'On the computation of steady axi-symmetric withdrawal from a two-layer fluid.' Comput. Fluids, Vol. 32, pp 385-401 https://doi.org/10.1016/S0045-7930(01)00085-8
- Imberger, J. (1972). 'Two-dimensional sink flow of a stratified fluid contained in a duct.' Journal of Fluid Mecianics, Vol. 53, pp. 329-349 https://doi.org/10.1017/S0022112072000187
- Imberger, J. (1980). 'Selective Withdrawal. A Review.', Second International Symposium on Stratified Flows, Trondheim, Norway, pp. 381-400
- Ivey, G.N, and Blake, S. (1985). 'Axisymmetric withdrawal and inflow in a density-stratified container.' Journal of Fluid Mechanics, Vol. 161, pp. 115-137 https://doi.org/10.1017/S0022112085002841
- Kundu, P.K. (1990). Fluid Mechanics, California: Academic Press
- Mason, P.J. (1989). Large eddy simulation of the convective boundary layer.' J. Atmos. Sci., Vol. 45, pp. 1492-1516 https://doi.org/10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2
- Mason, P.J. and Thomson, D. J. (1992). 'Stochastic backscatter in large-eddy simulation of boundary layers.' Journal of Fluid Mechanics. Vol. 242, pp. 51-78 https://doi.org/10.1017/S0022112092002271
- McGuirk, J.J. and Islam, S.A.K.M. (1987). 'Numerical Modelling of the Influence of a Hood on Axisymmetric Withdrawal from a Density Stratified Environment.' Proceedings of the Third International Symposium on Stratified Flows, Pasadena California, pp. 1047-1060
- Paik, J., Sotiropolous, F. and Sale, M. J. (2005). 'Numerical simulation of swirling flow m a hydroturbine draft tube using unsteady statistical turbulence models.' Journal of hydraulic Engineering, Vol. 131, No 6, pp. 441-456 https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(441)
- Pao, H.-P. and Kao, T.W. (1974). 'Dynamics of establishment of selective withdrawal of a stratified fluid from a line sink. Part 1. Theory.' Journal of Fluid Mechanics, Vol. 65, part 4, pp. 657-688 https://doi.org/10.1017/S0022112074001595
- Pao, H.-P., Kao, T.W., and Wei, S.N. (1974). 'Dynamics of establishment of selective withdrawal of a stratified fluid from a line sink. Part 2. Experiment.' Journal of Fluid Mechanics, Vol. 65, part 4, pp. 689-710 https://doi.org/10.1017/S0022112074001601
- Poinsot, T.J., and Lele, S.K. (1992). 'Boundary Conditions for Direct Simulations of Compressible Viscous Flows.' Journal of Computational Physics, Vol. 101, pp. 104-129 https://doi.org/10.1016/0021-9991(92)90046-2
- Rodi, W. (1987). 'Examples of calculation methods for flow and mixing in stratified fluids.' Journal of Geophysical Research, Vol. 92, No. C5, pp. 5305-5328 https://doi.org/10.1029/JC092iC05p05305
- Sladkevich, M., Militeev, A.N., Rubin, H., and Kit, E. (2000). 'Simulation of Transport Phenomena In Shallow Aquatic Environment.' Journal of Hydraulic Engineering, Vol. 126, No.2, pp. 123-136 https://doi.org/10.1061/(ASCE)0733-9429(2000)126:2(123)
- Sotiropoulos, F. and Abdallah (1992). 'A Primitive Variable Method for the Solution of Three-Dimensional Incompressible Viscous Flows.' Journal of Computational Physics, Vol. 103, pp. 336- 349 https://doi.org/10.1016/0021-9991(92)90405-N
- Tang, H. S., Jones, S. C. and Sotiropoulos, F. (2003). 'Domain Decomposition with overset grids for 3D incompressible flows.' Journal of Computational Physics, Vol. 191, pp. 567-600 https://doi.org/10.1016/S0021-9991(03)00331-0
- Thompson, K.W. (1990). 'Time-Dependent Boundary Conditions for Hyperbolic Systems, II.' Journal of Computational Physics, Vol. 89, pp. 439-461 https://doi.org/10.1016/0021-9991(90)90152-Q
- Viollet, P.-L. (1980). 'Turbulent Mixing in a Two-Layer Stratified Shear Flow.' Second International Symposium on Stratified Flows, Trondheim, Norway, pp. 315-325
- Wood, I.R. (2001). 'Extensions to the theory of selective withdrawal.' Journal of Fluid Mechanics, Vol. 448, pp.315- 333 https://doi.org/10.1017/S002211200100605X