참고문헌
- Sheldon, R. A. (1993), Chirotechnology, Marcel Dekker, New York
- Besse, P. and H. Veschambre (1994), Chemical and biological synthesis of chiral epoxides, Tetrahedron 50, 8885-8927 https://doi.org/10.1016/S0040-4020(01)85362-X
- Archelas A. and R. Furstoss (2001), Synthetic applications of epoxide hydrolases, Current Opinion in Chem. Biology 5, 112-119 https://doi.org/10.1016/S1367-5931(00)00179-4
- Steinreiber, A. and K. Faber (2001), Microbial epoxide hydrolases for preparative biotransformations, Current Opinion in Biotechnol. 12, 552-558 https://doi.org/10.1016/S0958-1669(01)00262-2
- Weijers, C. A. G. M., and J. A. M. de Bont (1999), Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis, J. Mol. Catal. B: Enzym., 6, 199-214 https://doi.org/10.1016/S1381-1177(98)00123-4
- Lee, E. Y. (2002), Epoxide hydrolase-catalyzed hydrolytic kinetic resolution for the production of chiral epoxides, Kor. J. Biotechnol. Bioeng. 17, 321-325
- de Vries, E. J. and D. B. Janssen (2003), Biocatalytic conversion of epoxides, Current Opinion Biotechnol. 14, 1-7 https://doi.org/10.1016/S0958-1669(02)00013-7
- Lee, E. Y., S.-S. Yoo, H. S. Kim, S. J. Lee, Y.-K. Oh, and S. Park (2004), Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis, Enzyme Microbial Technol. 35, 624-631 https://doi.org/10.1016/j.enzmictec.2004.08.016
- Hellstrom, H., A. Steinreiber, S. F. Mayer, and K. Faber (2001), Bacterial epoxide hydrolase-catalyzed resolution of a 2,2-disubstituted oxirane: optimization and upscaling, Biotechnol. Letters 23, 169-173 https://doi.org/10.1023/A:1005636121060
- Hernandez-Perez, G., F. Fayolle, and J. P. Vandecasteele (2001), Biodegradation of ethyl t-butyl ether, methyl t-butyl ether and t-amyl methyl ether by Gordonia terrae, Appl. Microbiol. Biotechnol. 55, 117-121 https://doi.org/10.1007/s002530000482
- Broker, D., M. Arenskotter, A. Legatzki, D. H. Nies, and A. Steinbuchel (2004), Characterization of the 101-kilobase-pair megaplasmid pKBl, isolated from the rubber-degrading bacterium Gordonia westfalica Kbl, J. Bacteriol. 186, 212-225 https://doi.org/10.1128/JB.186.1.212-225.2004
- Arand, M., D. F. Grant, J. K. Beetham, T. Friedberg, F. Oesch, and B. D. Hammock (1994), Sequence similarity of mammalian epoxide hydrolases to the bacterial haloalkane dehalogenase and other related proteins. Implication for the potential catalytic mechanism of enzymatic epoxide hydrolysis, FEBS Lett. 338, 251-256 https://doi.org/10.1016/0014-5793(94)80278-5
-
Lewis, D. F. V., B. G. Lake, and M. G. Bird (2005), Molecular modeling of human microsomal epoxide hydrolase (EH) by homology with a fungal (Aspergillus niger) EH crystal structure of 1.8
$\AA$ resolution: structure-activity relationships in epoxide inhibiting EH activity, Toxicology in Vitro 19, 517-522 https://doi.org/10.1016/j.tiv.2004.07.001 - Schwede, T., J. Kopp, N. Guex; and M. C. Peitsch (2003), SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Research 31, 3381-3385 https://doi.org/10.1093/nar/gkg520