물로 가수분해된 섬유성 기질로부터 hemicellulose 회수

Hemicellulose Recovery from Lignocellulosic Material Hydrolyzed by Water

  • 김성배 (경상대학교 공대 생명화학공학과 및 공학원) ;
  • 김창준 (경상대학교 공대 생명화학공학과 및 공학원)
  • Kim, Sung-Bae (Department of Chemical & Biological Engineering and ERI, Gyeongsang National University) ;
  • Kim, Chang, Joon (Department of Chemical & Biological Engineering and ERI, Gyeongsang National University)
  • 발행 : 2005.08.01

초록

섬유성 기질을 물 가수분해하여 생긴 당을 최대한 회수하는 여러 회수방법을 조사하였다. 사용한 전처리 조건은 반응온도가 $170\~180^{\circ}C$, 반응시간이 1시간이었다. 반응 온도가 170에서 $180^{\circ}C$로 증가함에 따라 xylan의 용해율은 증가하지만 $180^{\circ}C$ 이상에서는 상당양의 당이 분해됨을 알 수 있었다. 가수분해 결과로부터 남은 고체기질과 당화액에서 얻은 당의 물질수지를 조사하였는데 glucan의 경우는 비교적 잘 맞으나, 헤미셀룰로오스는 처리되지 않은 기질에 포함된 초기양과 비교할 때 상당한 차이가 났다. 그래서 여러가지 회수방법을 고안하여 당의 물질수지를 조사한 결과 회수기간동안 열을 가하거나 초음파를 조사하는 방법과 같은 물리적인 자극을 주면 액상에서 헤미셀룰로오스 회수율이 증가되는 것이 확인되었다. 이런 사실로부터 당 회수시 기질이 크고 전처리 후 침출용매를 많이 사용할 수 없는 상업적인 공정의 경우 상당양의 올리고당이 고체기공내 갇혀 액상으로 회수되지 못할 것으로 생각된다.

Various recovery methods were investigated to maximize hemicellulose recovery from lignocellulosic material hydrolyzed by pure water. The pretreatment conditions of water hydrolysis were $170\~180^{\circ}C$ and 1 hour of reaction time. The percentage of hemicellulose solubilized increased as the temperature increased from 170 to $180^{\circ}C$. However, significant decomposition of sugar was observed at temperature of $180^{\circ}C$. From the results of water hydrolysis, the total amount of glucan in solid residue and liquid hydrolyzate was close to the total glucan in the original biomass. For hemicellulose, however, there was a significant difference between both contents. To prove this difference, various recovery methods were proposed. From the total sugar accountability (sugar in liquid + sugar in solid), it was confirmed that hemicellulose recovery in the hydrolyzate was increased if the product including both hydrolyzate and solid residue was physically stimulated by such as heating and ultrasound irradiation. This indicated that, in commercial scale processes that much bigger substrate sizes are used and a sufficient amount of leaching solvent can not be used after pretreatment, a significant amount of oligomers could be trapped in the solid matrix.

키워드

참고문헌

  1. Zaitseva, A. F. and N. I. Nikitin (1951), The Aqueous Hydrolysis of Oakwood, J. Applied Chem. U.S.S.R. 24, 427-438
  2. Casebier, R. L., J. K. Hamilton, and H. L. Hergert (1969), Chemistry and Mechanism of Water Prehydrolysis on Southern Pine Wood, Tappi 52(12), 2369-2377
  3. Kamiyama, Y. and Y. Sakai (1979), Rate of Hydrolysis of Xylo-oligosaccharides in Dilute Sulfuric Acid, Carbohydr. Res. 73, 151-158 https://doi.org/10.1016/S0008-6215(00)85484-1
  4. Kim, S. B., S. J. Kim, D. M. Yum, and S. C. Park (1997), Kineti cs in Dilute Acid Hydrolysis of Woody Hemicellulose, Korean J. Biotechnol. Bioeng. 12(4), 402-409
  5. Kim, S. B. and Y. Y. Lee (1987), Kinetics in Acid-Catalyzed Hydr olysis of Hardwood Hemicellulose, Biotechnol. Bioeng. Symp. 17, 71-84
  6. McMillan, J. D. (1992), Processes for Pretreating Lignocellulosic Biomass: A Review, NREL/TP-421-4978, NREL, Golden, CO
  7. Brennan, M. A. and C. E. Wyman (2004), Initial Evaluation of Simple Mass Transfer Models to Describe Hemicellulose Hydrolysis in Corn Stover, Appl. Biochem. Biotechnol. 113/116, 965-976
  8. Zhu, Y., Y. Y. Lee, and R. T. Elander (2005), Optimization of Dilute-Acid Pretreatment of Corn Stover using a High-Solids Percolation Reactor, Appl. Biochem. Biotechnol. 121/124, 1045-1054
  9. Liu, C. and C. E. Wyman (2004), Impact of Fluid Velocity on Hot Water Only Pretreatment of Corn Stover in a Flowthrough Reactor, Appl. Biochem. Biotechnol. 113/116, 979-987
  10. Yum, D. M., S. B. Kim and S. C. Park (2000), Step-Change Varia tion of Acid Concentration in a Percolation Reactor for Hydrolysis of Hardwood Hemicellulose, Biores. Technol. 72, 289-294 https://doi.org/10.1016/S0960-8524(99)00081-4
  11. Kim, S. B., B. H. Um and S. C. Park (2001), Effect of Pretreatment Reagent and Hydrogen Peroxide on Enzymatic Hydrolysis of Oak in Percolation Process, Appl. Biochem. Biotechnol. 91/93, 81-94 https://doi.org/10.1385/ABAB:91-93:1-9:81
  12. www.ott.doe.gov/biofueIs/analytical_methods.ml/ (2004)
  13. Oshima, M. (1965), Wood Chemistry, Process Engineering Aspect, pp.85-99. Noyes Development Corp., New York
  14. Iyer, P. V., Z. Wu, S. B. Kim, and Y. Y. Lee (1996), Ammonia Recycled Percolation Process for Pretreatment of Herbaceous Biomass, Appl. Biochem. Biotechnol. 57/58, 121-132 https://doi.org/10.1007/BF02941693