Effect of Functional Monomer on Retention Factor of Chiral Racemate

기능성 단량체가 키랄 물질의 체류인자에 미치는 영향

  • Jin, Yin-Zhe (Center for Advanced Bioseparation Technology and Department of Chemical Engineering, Inha University) ;
  • Row, Kyung-Ho (Center for Advanced Bioseparation Technology and Department of Chemical Engineering, Inha University)
  • 김은철 (인하대학교 화학공학과 초정밀생물분리기술연구센터) ;
  • 노경호 (인하대학교 화학공학과 초정밀생물분리기술연구센터)
  • Published : 2005.08.01

Abstract

In this work, molecular imprinted polymers (MIPs) using the template of the N-CBZ (carbobenzyloxy)-L-phenylalanine, MAA and 4-VPY as a monomer, EGDMA as a crosslinker and AIBN as an initiator were considered. The prepared polymer particles $(Ca.\;25-35\;{\mu}m)$ were packed into a chromatographic column $(3.9\;\times\;150\;mm)$. The chromatographic characteristics of the retention on the MIP were experimented with acetonitrile as a mobile phase at the flow rate of mobile phase, 0.5 ml/min. The retention factors and resolutions of chiral racemate of the N-CBZ-D, L-phenylalanine were measured. The results showed that the retention factor and resolution by the two co-monomer imprinting polymer were higher than the single monomer imprinting polymers, which indicated an increase in the affinity of the MIP with the sample as a result of the cooperation effect of the binding sites.

N-CBZ-L-phenylalanine를 주형분자로 하고 MAA와 4-VPY를 기능성 단량체로 하여 분자각인 고분자를 합성하였다. N-CBZ-L-phenylalanine와 MAA, 4-VPY는 수소결합의 영향을 많이 받고 있으며 이온결합과 소수성결합도 작용하고 있다. 혼합성분을 기능성 단량체로 사용함으로 하여 단량체의 성분들 사이에서 상호작용 효과를 나타냈다. 실험결과에 의하면 혼합 성분인 MAA와 4-VPY를 기능성 단량체로 한 분자각인 고분자에서의 체류인자가 단일성분인 MAA를 사용한 고분자에서의 체류인자보다 컸고 컬럼 효율은 낮았지만 분리도는 높았다. 산성인 MAA와 염기성인 4-VPY를 함께 사용함으로써 거울상 이성질체인 N-CBZ-L-phenylalanine과 N-CBZ-D- phenylalanine의 분리도를 증가시킬 수 있었다. 혼합된 성분의 기능성 단량체로하여 제조된 분자각인 고분자를 키랄 물질의 분리를 비롯한 천연물질의 분리에 더 광범위하게 사용될 수 있을 것이다.

Keywords

References

  1. Yu, C. and K. Mosbach (2000), Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers, J. Chromatogr. A. 888, 63-72 https://doi.org/10.1016/S0021-9673(00)00556-2
  2. Failhurst, R. E., C. Chassaing, R. F. Venn, and A. G. Mayes (2004), A direct comparison of the performance of ground, beaded and silica-grafted MIPs in HPLC and Turbulent Flow Chromatography applications, Biosensors and Bioelectronics 20, 1098-1105 https://doi.org/10.1016/j.bios.2004.01.020
  3. Liu, Z. S., Y. L. Xu, C. Yan, and R. Y. Gao (2004), Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography, Anal. Chem. Acta. 523,243-250 https://doi.org/10.1016/j.aca.2004.07.001
  4. Nilsson, J., P. Spegel, and S. Nilsson (2004), Molecularly imprinted polymer formats for capillary electrochromatography, J. Chromatohr. B. 804,3-12 https://doi.org/10.1016/j.jchromb.2003.12.036
  5. Chen, X., C. Yia, X. Q. Yan, and X. R. Wang (2004), Liquid chromatography of active principles in Sophora flavescens root, J. Chromatohr. B. 812, 149-163 https://doi.org/10.1016/S1570-0232(04)00679-8
  6. Kugimiya, A. and T. Takeuchi (1999), Application of indoleacetic acid-imprinted polymer to solid phase extraction, Anal. Chim. Acta. 395, 251-255 https://doi.org/10.1016/S0003-2670(99)00349-9
  7. Blomgre, A., C. Berggren, A. Holmberg, F. Larsson, B. Sellergre, and K. Ensing (2002), Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection, J. Chromatogr. A. 975, 157-164 https://doi.org/10.1016/S0021-9673(02)01359-6
  8. Yano, K. and I. Karube (1999), Molecularly imprinted polymers for biosensor applications, Trends in Anal. Chem. 18(3), 199-204 https://doi.org/10.1016/S0165-9936(98)00119-8
  9. Snowden, T. S. and E. V. Anslyn (1999), Anion recognition: synthetic receptors for anions and their application in sensors, Current Opinion in Chem. Bio. 3(6), 740-746 https://doi.org/10.1016/S1367-5931(99)00034-4
  10. Park, J. K., H. Khan, and J. W. Lee (2004), Preparation of phenylalanine imprinted polymer by the sol-gel transition method, Enzyme and Microbial Technology 35, 688-693 https://doi.org/10.1016/j.enzmictec.2004.08.023
  11. Allender, C. J., K. R. Brain, C. Ballatore, D. Cahardc, A. Siddiqui, and C. McGuigan (2001), Separation of individual antiviral nucleotide prodrugs from synthetic mixtures using cross-reactivity of a molecularly imprinted stationary phase, Anal. Chim. Acta. 435, 107-113 https://doi.org/10.1016/S0003-2670(00)01369-6
  12. Lu, Y., C. X. Li, H. S. Zhang, and X. H. Liu (2003), Study on the mechanism of chiral recognition with molecularly imprinted polymers, Anal. Chim. Acta. 489, 33-43 https://doi.org/10.1016/S0003-2670(03)00708-6
  13. Wistuba, D., and V. Schurig (2000), Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography, J. Chromatohr. A. 875,255-276 https://doi.org/10.1016/S0021-9673(00)00066-2
  14. Ulbricht, M. (2004), Membrane separations using molecularly imprinted polymers, J. Chromatogr. B. 804, 113-125 https://doi.org/10.1016/j.jchromb.2004.02.007
  15. Wulff, G. (1995), Molecular Imprinting in cross-linked materials with the aid of molecular template-a way towards artificial antibodies, Angew. Chem. Int. Engl. 34, 1812-1832 https://doi.org/10.1002/anie.199518121
  16. Kriz, D. and K. Mosbach (1994), Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer, Anal. Chim. Acta. 300,71-75 https://doi.org/10.1016/0003-2670(94)00368-V
  17. Piletsky, S. A., E. V. Piletska, A. Bossi, K. Karim, P. Lowe, and A. P. F. Turner (2001), Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays, Biosensors & Bioelectronics. 16,701-707 https://doi.org/10.1016/S0956-5663(01)00234-2
  18. Kempe, M. and K. Mosbach (1997), Direct resolution of naproxen on a non-covalently molecular imprinted chiral stationary phase, J. Chromatogr. A. 664, 276-279
  19. Huang, X. D., F. Qin, X. M. Chen, Y. Q. Liu, and H. F. Zou (2004), Short columns with molecularly imprinted monolithic stationary phases for rapid separation of diastereomers and enantiomers, J. Chromatogr. B. 804,13-18 https://doi.org/10.1016/j.jchromb.2004.01.015
  20. Dauwe, C. and B. Sellergren (1996), Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers, J. Chromatogr A. 753, 191-200 https://doi.org/10.1016/S0021-9673(96)00564-X
  21. Pap, T., V. Horvath, A. Tolokan, G. Horvai, and B. Sellergre (2002), Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction, J. Chromatogr. A. 973, 1-12 https://doi.org/10.1016/S0021-9673(02)01084-1
  22. Simon, R. L. and D. A. Spivak (2004), Performance analysis of molecularly imprinted polymers for carboxylate and arninophosphate templates using commercially available basic functional monomers, J. Chromatogr B. 804,203-209 https://doi.org/10.1016/j.jchromb.2003.12.040