석회석의 $CO_2$의 흡수특성에 미치는 흡수/재생 반응의 반복횟수와 $SO_2$ 농도의 영향

Effects of Multiple-CycleOperation and $SO_2$ Concentration on the Absorption Characteristics of $CO_2$ by means of Limestone

  • 류호정 (한국에너지기술연구원 청정에너지연구센터)
  • Ryu Ho-Jung (Clean Energy Research Center, Korea Institute of Energy Research)
  • 발행 : 2005.09.01

초록

석회석의 $CO_2$ 흡수반응에 미치는 흡수/재생 반응의 반복횟수와 $SO_2$ 농도의 영향을 살펴보기 위해 내경 0.1m,높이 1.17m의 기포유동층에서 $CO_2$흡수능력의 변화를 측정 및 고찰하였다 $CO_2$흡수제로는 단 양산 석회석이 사용되었으며 실험변수로는 반복횟수$(\~10회)$$SO_2$ 농도 (0, 2000, 4000ppm)를 고려하였다. $CO_2$흡수능력은 반복횟수가 증가함에 따라 감소하였으며 10회 반복 후에는 초기성능의 $50\%$까지 감소하였다. 또한 $CO_2$흡수능력은 $SO_2$ 농도가 증가함에 따라 감소하는 경향을 나타내었다. 세 가지의 $CO_2$ 농도조건에 대해 총 CaO 이용률은 일정하게 유지되었으며 $SO_2$ 농도가 증가함에 따라 $SO_2$흡수능력은 증가하고 $CO_2$흡수능력은 감소하여, $CO_2/SO_2$동시흡수 반응에서 $SO_2$흡수반응이 $CO_2$흡수반응보다 우세하게 일어남을 알 수 있었다.

To investigate the effects of the number of multiple-cycles and $SO_2$ concentration on $CO_2$ absorption characteristics by means of limestone, $CO_2$ capture capacity has been measured in a bubbling fluidized bed reactor (0.1m 1.D., 1.17m high). Danyang limestone was used as a $CO_2$ sorbent and the number of cycles $(\~10th\;cycle)$ and $SO_2$ concentrations (0, 2000, 4000 ppm) were considered as variables. The measured $CO_2$ capture capacity decreased as the number of cycles increased and it showed $50\%$ or initial value after 10 cycles. Moreover, $CO_2$ rapture capacity decreased with 501 concentrations. For three different $SO_2$ concentrations, the total CaO utilization was almost the same but $SO_2$ capture capacity increased and $CO_2$ capture capacity decreased as $SO_2$ concentration increased. These results suggest that $SO_2$ capture reaction is predominant over $CO_2$ capture reaction in the simultaneous $CO_2/SO_2$ capture conditions.

키워드

참고문헌

  1. 류호정. '화력발전소 이산화탄소 배출특성 및 회수기술', ETIS 분석지, 한국에너지기술연구원, 2001, 15, 76-121
  2. IEA Greenhouse Gas R&D Programme Report. 'Greenhouse Gas Emissions from Power Stations', available on http://www.ieagreen.org.uk/srlp.htm
  3. IEA Greenhouse Gas R&D Programme Report. 'Carbon Dioxide Capture from the Power Stations', available on http://www.ieagreen.org.uk/sr2p.htm
  4. Salvador, C.; Lu, D.; Anthony, E.J.; Abanades, J.C. 'Enhancement of CaO for $CO_2$ Capture in an FBC Environment', Chem. Eng. J., 2003, 96, 187-195 https://doi.org/10.1016/j.cej.2003.08.011
  5. Curran, G.P.; Fink, C.E.; Gorin, E. '$CO_2$ Acceptor Gasification Process-Studies of Acceptor Properties', Adv. Chem. Ser., 1967, 69, 141-165 https://doi.org/10.1021/ba-1967-0069.ch010
  6. Barker, R. 'The Reversibility of the Reaction $CaCO_3=CaO+CO_2$', J. Appl. Chem. Biotechnol., 1973, 23, 733-742 https://doi.org/10.1002/jctb.5020231005
  7. Silaban, A.; Narcida, M.; Harrison, D.P. Chem. Eng. Comm., 1996, 146, 149-162 https://doi.org/10.1080/00986449608936487
  8. Shimizu, T.; Hirama, T.; Hosoda, H.; Kitano, K.; Inagaki, M.; Tejima, K. 'A Twin Fluid-Bed Reactor for Removal of $CO_2$ from Combustion Processes', Trans IChemE, 1999, 77, Part A, 62-68 https://doi.org/10.1205/026387699525882
  9. Aihara, M.; Nagai, T.; Matsushita, J.; Negishi, Y.; Ohya, H. 'Development of Porous Solid Reactant for Thermal-Energy Storage and Temperature Upgrade Using Carbonation/Decarbonation Reaction', Applied Energy, 2001, 69, 225-238 https://doi.org/10.1016/S0306-2619(00)00072-6
  10. Abanades, J.C. 'The Maximum Capture Efficiency of $CO_2$ Using a Carbonation/Calcination Cycle of CaO/$CaCO_3$', Chem. Eng. J., 2002, 90, 303-306 https://doi.org/10.1016/S1385-8947(02)00126-2
  11. Laursen, K.; Duo, W.; Grace, J.R.; Lim, J. 'Sulfation and Reactivation Characteristics of Nine Limestones', Fuel, 2000, 79, 153-163 https://doi.org/10.1016/S0016-2361(99)00147-7
  12. Laursen, K.; Duo, W.; Grace, J.R.; Lim, J. 'Characterization of Steam Reactivation Mechanisms in Limestones and Spent Calcium Sorbents', Fuel, 2001, 80, 1293-1306 https://doi.org/10.1016/S0016-2361(01)00011-4