DOI QR코드

DOI QR Code

First-principles Study on Half-metallicity and Magnetism for Zinc-blende CrS(001) Surface

Zinc-blende 구조를 가진 CrS(001) 표면에서의 반쪽금속성과 자성에 대한 제일원리 연구

  • Byun, Y.S. (Department of Physics, Inha University) ;
  • Lee, J.I. (Department of Physics, Inha University)
  • Published : 2005.10.01

Abstract

We investigated the half-metallicity and magnetism for the zinc-blende CrS(001) surfaces by use of the full-potential linearized augmented plane wave (FLAPW) method. We considered two-types of (001) surfaces terminated by Cr (Cr-Term) and S (S-Term) atoms, respectively. From the calculated layer-by-layer density of states, it is found that both of the systems retain the half-metallicity at the (001) surfaces. The calculated magnetic moment ($4.07\;{\mu}_B$) for the CrS(S) atom in Cr-Term is enhanced considerably compared to the bulk value ($3.61\;{\mu}_B$) while that ($3.15\;{\mu}_B$) of the Cr(S-1) in S-Term is much reduced.

Zinc-blende 구조를 가진 CrS(001) 표면에서의 반쪽금속성과 자성을 제일원리 방법을 이용하여 연구하였다. 이를 위해 (001)면에서 서로 다른 두 개의 원자로 끝나는 면, 즉 Cr원자로 끝나는 (001) 표면(Cr-Term)과 S원자로 끝나는 (001) 표면(S-Term)계의 전자구조를 총 퍼텐셜 선형보강평면파동(FLAPW) 에너지띠 방법을 이용하여 계산하였다. 계산된 상태밀도로부터 Cr-Term과 S-Term계 모두 그 표면에서 반쪽금속성이 유지됨을 알았다 Cr-Term계의 표면 Cr원자의 자기모멘트는 덩치상태($3.61\;{\mu}_B$)에 비해 상당히 큰 $4.07\;{\mu}_B$이었으며 S-Term의 경우 표면 바로 밑층 Cr원자의 자기모멘트는 덩치상태에 비해 상당히 감소한 $3.15\;{\mu}_B$의 값을 가졌다.

Keywords

References

  1. Ph. Mavropoulos, I. Galanakis, and P. H. Dederichs, J. Phys.: Condens. Matter, 16, 4261 (2004) https://doi.org/10.1088/0953-8984/16/24/008
  2. R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, 2024 (1983) https://doi.org/10.1103/PhysRevLett.50.2024
  3. K. Schwarz, J. Phys. F: Met. Phys., 16, L211 (1986) https://doi.org/10.1088/0305-4608/16/9/002
  4. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett., 81, 1953 (1998) https://doi.org/10.1103/PhysRevLett.81.1953
  5. R. Yamamoto, A. Machida, Y. Moritomo, and A. Nakamura, Phys. Rev. B, 59, R7793 (1999) https://doi.org/10.1103/PhysRevB.59.R7793
  6. T. Shishidou, A. J. Freeman, and R. Asahi, Phys. Rev. B, 64, 180401 (R) (2001) https://doi.org/10.1103/PhysRevB.64.180401
  7. K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature, 395, 677 (1998) https://doi.org/10.1038/27167
  8. W. C. Kim, K. Kawaguchi, N. Koshizaki, M. Sohma, and T. Matsumoto, J. Appl. Phys., 93, 8032 (2003) https://doi.org/10.1063/1.1557337
  9. S. Ishida, T. Masaki, S. Fujii, and S. Asano, Physica B, 245, 1 (1998) https://doi.org/10.1016/S0921-4526(97)00495-X
  10. G. H. Lee, I. G. Kim, J. I. Lee, and Y. -R. Jang, Phys. Stat. Sol. (b), 241, 1435 (2004) https://doi.org/10.1002/pssb.200304522
  11. H. Akinaga, T. Manago, and M. Shirai, Jpn. J. Appl. Phys., 39, L1118 (2000) https://doi.org/10.1143/JJAP.39.L1118
  12. R. J. Soulen, Jr., J. Byers, M. S. Osofsky, B. Nadgomy, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science, 282, 85 (1998) https://doi.org/10.1126/science.282.5386.85
  13. G. A. de Wijs and R. A. de Groot, Phys. Rev. B, 64, 020402 (2001 ) https://doi.org/10.1103/PhysRevB.64.020402
  14. I. Galanakis, Phys. Rev. B, 66, 012406 (2002) https://doi.org/10.1103/PhysRevB.66.012406
  15. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981) https://doi.org/10.1103/PhysRevB.24.864
  16. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B, 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  17. P. Hohenberg and W. Kohn, Phys. Rev., 136,13864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  18. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965) https://doi.org/10.1103/PhysRev.140.A1133
  19. J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992) https://doi.org/10.1103/PhysRevB.45.13244