References
- Brann, M. R., Ellic, J., Jorgensen, H., Hill-Eubanks, D., and Jones, S. V., Muscarinic acetylcholine receptor subtypes: localization and structure/function. Prog. Brain Res., 98, 121- 127 (1993) https://doi.org/10.1016/S0079-6123(08)62388-2
- Caulfield, M. P., Muscarinic receptors characterization, coupling and function. Pharmacol. Ther., 58, 319-379 (1993) https://doi.org/10.1016/0163-7258(93)90027-B
-
Cho, H., Nam, G. B., Lee, S. H., Earm, Y. E., and Ho, W. K., Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in
${\alpha}_1$ -adrenergic pathway via the modulation of acetylcholine-activated$K^{+}$ channels in mouse atrial myocytes. J. Biol. Chem., 276, 159-164 (2001) https://doi.org/10.1074/jbc.M004826200 -
Cho, H., Hwang, J. Y., Kim, D., Shin, H. S., Kim, Y., Earm, Y. E., and HO, W. K., Acetylcholine-induced phosphatidylinositol 4,5-bisphosphate depletion does not cause short-term desensitization of G-protein-gated inwardly rectifying
$K^{+}$ current in mouse atrial myocytes. J. Biol. Chem., 277, 27742- 27747 (2002) https://doi.org/10.1074/jbc.M203660200 - Colecraft, H. M., Egamino, J. P., Sharma, V. K., and Sheu, S. S., Signaling mechanisms underlying muscarinic receptormediated increase in contraction rate in cultured heart cells. J. Biol. Chem., 273, 32158-32166 (1998) https://doi.org/10.1074/jbc.273.48.32158
- Del Castillo, J. and Katz, B., Production of membrane potential changes in the frog's heart by inhibition nerve impulses. Nature, 175, 1035 (1995) https://doi.org/10.1038/175995a0
-
Gallo, M. P., Alloatti, G., Eva, C., Oberto, A., and Levi, R. C.,
$M_1$ muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes. J. Physiol (Lond.)., 471, 41-60 (1993) https://doi.org/10.1113/jphysiol.1993.sp019890 - Gilmour, R. F. and Zipes, D. P., Positive inotropic effect of acetylcholine in canine cardiac Purkinje fibers. Am. J. Physiol., 249, H735-H740 (1985)
-
Hardouin, S. N., Richmond, K. N., Zimmerman, A., Hamilton, S. E., Feigl, E. O., and Nathanson, N. M., Altered cardiovascular responses in mice lacking the
$M_1$ muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther., 301, 129-137 (2002) https://doi.org/10.1124/jpet.301.1.129 - Hartzell, H. C., Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog. Biophys. Mol. Biol., 52, 165-247 (1988) https://doi.org/10.1016/0079-6107(88)90014-4
- Hosey, M. M., Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J., 6, 845-852 (1992) https://doi.org/10.1096/fasebj.6.3.1740234
- Islam, M. A., Nojima, H., and Kimura, I., Muscarinic M1 receptor activation reduces maximum upstroke velocity of action potential in mouse right atria. Er. J. Pharmacol., 436, 227-236 (1998) https://doi.org/10.1016/S0014-2999(98)00055-7
-
Jaconi, M., Bony, C., Richards, S. M., Terzic, A., Arnaudeau, S., Vassort, G., and Puceat, M., Inositol 1,4,5-trisphosphate directs
$Ca^{2+}$ flow between mitochondria and the endoplasmic/ sarcoplasmic reticulum: a role in regulating cardiac autonomic$Ca^{2+}$ spiking. Mol. Biol. Cell, 11, 1845-1858 (2000) https://doi.org/10.1091/mbc.11.5.1845 - Kim, D., Jun, K. S., Lee, S. B., Kang, N. G., Min, D. S., Kim, Y. H., Ryu, S. H., Suh, P. G., and Shin, H. S., Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature, 389, 290-293 (1997) https://doi.org/10.1038/38508
- Kohl, C., Schmitz, W., and Scholz, H., Positive inotropic effects of carbachol and inositol phosphate levels in mammalian atria after treatment with pertussis toxin. J. Pharmacol. Exp. Ther., 254, 894-899 (1990)
-
Korth, M. and Kühlkamp, V., Muscarinic receptor-mediated increase of intracellular
$Na^{+}$ ion activity and force of contraction. Pflugers Arch., 403, 266-272 (1985) https://doi.org/10.1007/BF00583598 - Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N., and Jan, L. Y., Primary structure and functional expression of a rat Gprotein- coupling muscarinic potassium channel. Nature, 364, 802-806 (1993) https://doi.org/10.1038/364802a0
- Levy, M. N. and Martin, P., Parasympathetic control of the heart, In Randall, W.C. (Eds.). Nerve Control of Cardiovascular Function. Oxford Univ. Press, New York, pp. 68, (1984)
-
Meyer, T., Wellner-Kienitz, M. C., Biewald, A., Bender, K., Eickel, A., and Pott, L., Depletion of phosphatidylinositol 4,5- bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier
$K^{+}$ current in atrial myocytes. J. Biol. Chem., 276, 5650-5658 (2001) https://doi.org/10.1074/jbc.M009179200 - Pappano, A. J., Vagal stimulation of the heartbeat: muscarinic receptor hypothesis. J. Cardiovasc. Electrophysiol., 2, 262- 273 (1991) https://doi.org/10.1111/j.1540-8167.1991.tb01324.x
- Schimerlik, M. I., Structure and regulation of muscarinic receptors. Annu. Rev. Physiol., 51, 217-227 (1989) https://doi.org/10.1146/annurev.ph.51.030189.001245
-
Sharma, V. K., Colecraft, H. M., Wang, D. X., Levey, A. I., Grigorenko, E. V., Yeh, H. H., and Sheu, S. S., Molecular and functional identification of
$m_1$ muscarinic acethylcholine receptors in rat ventricular myocytes. Circ. Res., 79, 86-93 (1996) https://doi.org/10.1161/01.RES.79.1.86 - Shi, H., Wang, H., and Wang, Z., Identification and characterization of multiple subtypes of muscarinic acetylcholine receptors and their physiological functions in canine hearts. J. Pharmacol. Exp. Ther., 55, 497-507 (1999)
- Toda, N. and West, T. C., Changes in sino-atrial node transmembrane potentials on vagal stimulation of the isolated rabbit atrium. Nature, 205, 808-811 (1965) https://doi.org/10.1038/205808a0
- Wang, H., Han, H., Zhang, L., Shi, H., Schram, G., Nattel, S., and Wang, Z., Expression of multiple multiple subtypes of muscarinic receptors and cellular distribution in the human heart. Mol. Pharmacol., 59, 1029-1036 (2001) https://doi.org/10.1124/mol.59.5.1029
-
Watson, M., Yamamura, H. I., and Roeske, W. R., A unique regulatory profile and regional distribution of [
$3^H$ ] pirenzepine binding in the rat provide evidence for distinct$m_1$ and$m_2$ muscarinic receptor subtypes. Life Sci., 32, 3001-3010 (1983) https://doi.org/10.1016/0024-3205(83)90652-5