In Vitro Stimulation of Murine Peritoneal Monocytes Induced by Alginates

  • Pasquali Paolo (Dipartimento di Sanita Alimentare ed Animale, Istituto Superiore di Sanita, Istituto Superiore di Sanita) ;
  • Zalcman Amy (Dipartimento di Sanita Alimentare ed Animale, Istituto Superiore di Sanita, Istituto Superiore di Sanita) ;
  • Murtas Susanna (Dipartimento di Sanita Alimentare ed Animale, Istituto Superiore di Sanita, Istituto Superiore di Sanita) ;
  • Adone Rosanna (Dipartimento di Sanita Alimentare ed Animale, Istituto Superiore di Sanita, Istituto Superiore di Sanita) ;
  • Brambilla Gianfranco (Dipartimento di Sanita Alimentare ed Animale, Istituto Superiore di Sanita, Istituto Superiore di Sanita) ;
  • Marianelli Cinzia (Isstituto Zooprofilattico Dell'Umbria e delle Marche) ;
  • Cagiola Monica (Isstituto Zooprofilattico Dell'Umbria e delle Marche) ;
  • Ciuchini Franco (Dipartimento di Sanita Alimentare ed Animale, Istituto Superiore di Sanita, Istituto Superiore di Sanita)
  • Published : 2005.08.01

Abstract

In this trial we assessed the effect of soluble alginates on murine cells. Mouse peritoneal monocytes were stimulated in vitro with a solution of alginate. The production of $TNF-\alpha$ and nitric oxide (NO), the expression of surface molecules CD80 and CD86, and the ability of monocytes to phagocyte bacteria were assessed, in order to evaluate the effect of alginate on cell functionality. We showed that mouse peritoneal monocytes stimulated with alginate produce NO and $TNF-\alpha$. In addition, alginate is able also to increase their phagocytic activity and to a lesser extent also to increase the expression of CD80. Even with different degrees, it implies that alginates per se act directly on immune response, being able to effectively stimulate proinflammatory activity. These findings corroborate the idea that alginates can represent interesting adjuvants to use to increase the efficacy of antigenic stimulation.

Keywords

References

  1. Andre, F. E., The future of vaccines, immunisation concepts and practice. Vaccine, 19, 2206-2209 (2001) https://doi.org/10.1016/S0264-410X(00)00546-6
  2. Bowerestock, T. L. and Martin, S., Vaccine delivery to animals. Advanced Drug Delivery Reviews, 38, 167-194 (1999) https://doi.org/10.1016/S0169-409X(99)00015-0
  3. Cho, N. H., Seong, S. Y., Chun, K. H., Kim, Y. H., Kwon, I. C., Ahn, B. Y., and Jeong, S. Y., Novel mucosal immunization with polysaccharide-protein conjugates entrapped in alginate microspheres. J. Controlled Release, 53, 215-225 (1998) https://doi.org/10.1016/S0168-3659(97)00255-1
  4. Ellis, R. W., Technologies for the design, discovery, formulation and administration of vaccines. Vaccine, 19, 2681-2687 (2001) https://doi.org/10.1016/S0264-410X(00)00504-1
  5. Espevik, T., Otterlei, M., Skjak-Braek, G., Ryan, L., Wright, S. D., and Sundan, A., The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. Eur. J. Immunol., 23, 255-261 (1993) https://doi.org/10.1002/eji.1830230140
  6. Gacesa, P., Bacterial alginate biosynthesis-recent progress and future prospects. Microbiology, 144, 1133-1143 (1998) https://doi.org/10.1099/00221287-144-5-1133
  7. Gullstein Jahr, T., Ryan, L., Sundan, A., Lichenstein, H. S., Skjak-Braek, G., and Espevik, T., Induction of tumor necrosis factor production from monocytes stimulated with mannuronic acid polymers and involvement of lipopolysaccharide-binding protein, CD14, and bactericidal/permeability-increasing factor. Infect. Immun., 65, 89-94 (1997)
  8. Hess, J., Schaible, U., Raupach, B., and Kaufmann, S. H. E., Exploiting the Immune System: Toward New Vaccines against Intracellular Bacteria. Adv. Immunlo., 75, 1-88 (2000) https://doi.org/10.1016/S0065-2776(00)75001-2
  9. Kuchroo, V. K., Das, M. P., Brown, J. A., Ranger, A. M., Zamvil, S. S., Sobel, R. A., Weiner, H. L., Nabavi, N., and Glimcher, L. H., B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 development pathways: application to autoimmune disease therapy. Cell, 80, 707-718 (1995) https://doi.org/10.1016/0092-8674(95)90349-6
  10. Otterlei, M., Ostgaard, K., Skjak-Braek, G., Smidsrod, O., Soon- Shiong, P., and Espevik, T., Induction of cytokine production from human monocytes stimulated with alginate. J. Immunother., 10, 286-291 (1991) https://doi.org/10.1097/00002371-199108000-00007
  11. Otterlei, M., Sundan, A., Skjak-Braek, G., Ryan, L., Smidsrod, O., and Espevik, T., Similar Mechanisms of action of defined polysaccharides and lipopolysaccharides: characterization of binding and tumor necrosis factor alpha induction. Infect. Immun., 61, 1917-1925 (1993)
  12. Sansom, D. M., Manzotti, C. N., and Zheng, Y., What's the difference between CD80 and CD86? Trends Immunol., 24, 313-318 (2003) https://doi.org/10.1016/S1471-4906(03)00111-X
  13. Smidsrod, O. and Draget, K. I., Chemistry and physical properties of alginates. Carbohydrates in Europe 1996, 14, 6- 12 (1998)
  14. Son, E. H., Moon, E. Y., Rhee, D. K., and Pyo, S., Stimulation of various functions in murine peritoneal macrophages by high mannuronic acid-containing alginate (HMA) exposure in vivo. Int. Immunopharmacol., 1, 147-154 (2001) https://doi.org/10.1016/S1567-5769(00)00012-6
  15. Tauxe, R. V., Strategies for surveillance and prevention. Lancet, 352 Suppl 4, 10 (1998) https://doi.org/10.1016/S0140-6736(98)90272-0