References
- K. Alam and K. M. L. Saxena, Positive dependence in multivariate distributions, Comm. Statist. Theory Methods A10 (1981), 1183-1196
- J. I. Baek, T. S. Kim and H. Y. Liang, On the convergence of moving average processes under dependent conditions, Aust. N. Z. J. Stat. 45 (2003), no. 3, 331-342 https://doi.org/10.1111/1467-842X.00287
- Z. D. Bai and P. E. Cheng, Marcinkiewicz strong lawss for linear statistics, Statist. Probab. Lett. 46 (2000), 105-112 https://doi.org/10.1016/S0167-7152(99)00093-0
- Z. D. Bai, P. E. Cheng, and C. H. Zhang, An extension of the Hardy-Littlewood strong law, Statist. Sinica, 1997, 923-928
- P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968
- H. W. Block, T. H. Savits, and M. Shaked, Some concepts of negative dependence, Ann. Probab. 10 (1982), 765-772 https://doi.org/10.1214/aop/1176993784
- P. E. Cheng, A note on strong convergence rates in nonparametric regression, Statist. Probab. Lett. 24 (1995), 357-364 https://doi.org/10.1016/0167-7152(94)00195-E
- J. Cuzick, A strong law for weighted sums of i.i.d. random variables, J. Theoret. Probab. 8 (1995), 625-641 https://doi.org/10.1007/BF02218047
- T. C. Hu, F. Moricz, and R. L. Taylor, Strong laws of large numbers for arrays of rounuise independent random variables, Statistics Technical Report 27. University of Georgia, 1986
- K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Statist. 11 (1983), 286-295 https://doi.org/10.1214/aos/1176346079
- H. Y. Liang and C. Su, Complete convergence for weighted sums of NA sequences, Statist. Probab. Lett. 45 (1999), 85-95 https://doi.org/10.1016/S0167-7152(99)00046-2
- H. Y. Liang, Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett. 48 (2000), 317-325 https://doi.org/10.1016/S0167-7152(00)00002-X
- P. Matula, A note on the almost sure convergence of sums of negatively dependences random variables, Statist. Probab. Lett. 15 (1992), 209-213 https://doi.org/10.1016/0167-7152(92)90191-7
- C. M. Newman and Y. L. Tong, Asymptotic independence and limit theorems for positively and negatively dependent random variables (IMS, Hayward, CA), 1984, 127-140
- G. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes, J. Multivariate Anal. 50 (1994), 152-173 https://doi.org/10.1006/jmva.1994.1039
- Q. M. Shao, A comparison theorem on moment inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000), 343-356 https://doi.org/10.1023/A:1007849609234
- C. Su, L. C. Zhao, and Y. B. Wang, Moment inequalities and weak convergence for negatively associated sequences, Sci. China Ser. A 40 (1997), 172-182 https://doi.org/10.1007/BF02874436
- S. Sung, Strong laws for weighted sums of i.i.d.random variables, Statist. Probab. Lett. 52 (2001), 413-419 https://doi.org/10.1016/S0167-7152(01)00020-7
Cited by
- Weighted sums of associated variables vol.41, pp.4, 2012, https://doi.org/10.1016/j.jkss.2012.04.001
- ON ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF LNQD RANDOM VARIABLES vol.34, pp.2, 2012, https://doi.org/10.5831/HMJ.2012.34.2.241
- A Note on Weighted Sums of Associated Random Variables vol.143, pp.1, 2014, https://doi.org/10.1007/s10474-014-0397-1