DOI QR코드

DOI QR Code

NOTES ON SELECTION PRINCIPLES IN TOPOLOGY (I): PARACOMPACTNESS

  • BABINKOSTOVA L. (Faculty of Natural Sciences and Mathematics Institute of Mathematics) ;
  • KOCINAC LJ. D. R. (Faculty of Sciences University of Nis) ;
  • SCHEEPERS M. (Department of Mathematics Boise State University)
  • Published : 2005.07.01

Abstract

G. Gruenhage gave a characterization of paracompactness of locally compact spaces in terms of game theory ([6]). Starting from that result we give another such characterization using a selective version of that game, and study a selection principle in the class of locally compact spaces and its relationships with game theory and a Ramseyan partition relation. We also consider a selective version of paracompactness.

Keywords

References

  1. D. F. Addis and J. H. Gresham, A class of infinite-dimensional spaces, Part I : Dimension theory and Alexandroff's problem, Fund. Math. 101 (1978), 195-205 https://doi.org/10.4064/fm-101-3-195-205
  2. L. Babinkostova, Selection principles in topology, Doctoral dissertation, Skopje, 2001, (in Macedonian)
  3. J. E. Baumgartner and A. D. Taylor, Partition theorems and ultrafilters, Trans. Amer. Math. Soc. 241 (1978), 283-309 https://doi.org/10.2307/1998845
  4. R. Engelking, General Topology, PWN, Warszawa, 1977
  5. F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Ser. Sci.Math. Astronom. Phys. 26 (1978), 445-448
  6. G. Gruenhage, Games, covering properties and Eberlein compacts, Topology Appl. 23 (1986), 291-297 https://doi.org/10.1016/0166-8641(85)90046-X
  7. G. Gruenhage and D. K. Ma, Baireness of $\C_{kappa}$(X) for locally compact X, Topology Appl. 80 (1997), 131-139 https://doi.org/10.1016/S0166-8641(96)00163-0
  8. W. Haver, A covering property for metric spaces, Proc. Topology Conference at Virginia Polytechnic Institute and State University, March 22-29, 1973
  9. R. F.Dickman, Jr. and P. Fletcher (eds.), Lectures Notes in Math. 375 (1974)
  10. W. Hurewicz, Uber eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401-421 https://doi.org/10.1007/BF01216792
  11. W. Just, A. W. Miller, M. Scheepers, and P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266 https://doi.org/10.1016/S0166-8641(96)00075-2
  12. Lj. D. R. Kocinac and M. Scheepers, The combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003), 131-155 https://doi.org/10.4064/fm179-2-2
  13. D. K. Ma, The Cantor tree, the $\gamma$-property, and Baire function spaces, Proc.Amer. Math. Soc. 119 (1993), 903-913 https://doi.org/10.2307/2160531
  14. K. Menger, Einige UberdeckungssAatze der Punktmengenlehre, Sitzungsberichte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien) 133 (1924), 421-444
  15. A. W. Miller and D. H. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33 https://doi.org/10.4064/fm-129-1-17-33
  16. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286 https://doi.org/10.1112/plms/s2-30.1.264
  17. F. Rothberger, Eine VershAarfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55 https://doi.org/10.4064/fm-30-1-50-55
  18. M. Scheepers, Combinatorics of open covers I : Ramsey theory, Topology Appl. 69 (1996), 31-62 https://doi.org/10.1016/0166-8641(95)00067-4
  19. M. Scheepers, Open covers and partition relations, Proc. Amer. Math. Soc. 127 (1999), 577-581 https://doi.org/10.1090/S0002-9939-99-04513-X
  20. L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Springer- Verlag, New York Inc. 1978

Cited by

  1. Versions of properties (a) and (pp) vol.158, pp.12, 2011, https://doi.org/10.1016/j.topol.2011.05.010
  2. Some covering properties in topological and uniform spaces vol.252, pp.1, 2006, https://doi.org/10.1134/S0081543806010123
  3. Selective games on binary relations vol.192, 2015, https://doi.org/10.1016/j.topol.2015.05.071