Browse > Article
http://dx.doi.org/10.4134/JKMS.2005.42.4.709

NOTES ON SELECTION PRINCIPLES IN TOPOLOGY (I): PARACOMPACTNESS  

BABINKOSTOVA L. (Faculty of Natural Sciences and Mathematics Institute of Mathematics)
KOCINAC LJ. D. R. (Faculty of Sciences University of Nis)
SCHEEPERS M. (Department of Mathematics Boise State University)
Publication Information
Journal of the Korean Mathematical Society / v.42, no.4, 2005 , pp. 709-721 More about this Journal
Abstract
G. Gruenhage gave a characterization of paracompactness of locally compact spaces in terms of game theory ([6]). Starting from that result we give another such characterization using a selective version of that game, and study a selection principle in the class of locally compact spaces and its relationships with game theory and a Ramseyan partition relation. We also consider a selective version of paracompactness.
Keywords
paracompact; locally compact; moving-off family; selection principles; Ramsey theory; game theory;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 G. Gruenhage and D. K. Ma, Baireness of $\C_{kappa}$(X) for locally compact X, Topology Appl. 80 (1997), 131-139   DOI   ScienceOn
2 W. Haver, A covering property for metric spaces, Proc. Topology Conference at Virginia Polytechnic Institute and State University, March 22-29, 1973
3 R. F.Dickman, Jr. and P. Fletcher (eds.), Lectures Notes in Math. 375 (1974)
4 W. Hurewicz, Uber eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401-421   DOI
5 W. Just, A. W. Miller, M. Scheepers, and P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266   DOI   ScienceOn
6 D. K. Ma, The Cantor tree, the $\gamma$-property, and Baire function spaces, Proc.Amer. Math. Soc. 119 (1993), 903-913   DOI
7 K. Menger, Einige UberdeckungssAatze der Punktmengenlehre, Sitzungsberichte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien) 133 (1924), 421-444
8 Lj. D. R. Kocinac and M. Scheepers, The combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003), 131-155   DOI
9 L. Babinkostova, Selection principles in topology, Doctoral dissertation, Skopje, 2001, (in Macedonian)
10 R. Engelking, General Topology, PWN, Warszawa, 1977
11 F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Ser. Sci.Math. Astronom. Phys. 26 (1978), 445-448
12 G. Gruenhage, Games, covering properties and Eberlein compacts, Topology Appl. 23 (1986), 291-297   DOI   ScienceOn
13 M. Scheepers, Combinatorics of open covers I : Ramsey theory, Topology Appl. 69 (1996), 31-62   DOI   ScienceOn
14 A. W. Miller and D. H. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33   DOI
15 F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286   DOI
16 F. Rothberger, Eine VershAarfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55   DOI
17 M. Scheepers, Open covers and partition relations, Proc. Amer. Math. Soc. 127 (1999), 577-581   DOI   ScienceOn
18 L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Springer- Verlag, New York Inc. 1978
19 J. E. Baumgartner and A. D. Taylor, Partition theorems and ultrafilters, Trans. Amer. Math. Soc. 241 (1978), 283-309   DOI   ScienceOn
20 D. F. Addis and J. H. Gresham, A class of infinite-dimensional spaces, Part I : Dimension theory and Alexandroff's problem, Fund. Math. 101 (1978), 195-205   DOI