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NOTES ON SELECTION PRINCIPLES IN
TOPOLOGY (I): PARACOMPACTNESS

L. BABINKOSTOVA, LJi. D. R. KOoCINAC, AND M. SCHEEPERS

ABSTRACT. G. Gruenhage gave a characterization of paracompact-
ness of locally compact spaces in terms of game theory ([6]). Start-
ing from that result we give another such characterization using a
selective version of that game, and study a selection principle in the
class of locally compact spaces and its relationships with game the-
ory and a Ramseyan partition relation. We also consider a selective
version of paracompactness.

1. Introduction

Many mathematical notions are defined, or characterized, in terms of
selection principles of the following two sorts: Let S be an infinite set,
and let A and B both be sets whose members are families of subsets of

S.
Then Sqn(A, B) denotes the selection principle:

For each sequence (A4, : n € N) of elements of A there is a
sequence (B, : n € N) of finite sets such that for each n € N,
B, C Ap, and J,,cy By is an element of B.

Among topologists and set theorists the best known example of this
sort of principle is known as the Menger property: For a topological space
X, let O denote the collection of open covers of X. In [9], Hurewicz
showed that a property for X introduced by Menger in [13] is equivalent
to the property Sgn (O, O).

There is a natural game, denoted Gg, (A, B), associated with Sgp (A,
B). This game is played as follows: There is an inning per positive
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integer. In the n-th inning ONE chooses an A,, € A, and TWO responds
with a finite set B, C A,. A play A1, By;---; Ay, Bp;--- is won by
TWO if U, e Bn is an element of B; otherwise, ONE wins.

S1(A, B) denotes the selection principle:

For each sequence (A, : n € N) of elements of A there is a
sequence (b, : n € N) such that for each n € N, b, € A4,, and
{bn : n € N} is an element of B.

The best known example of this sort of principle is known as the Roth-
berger property: For a topological space X, let O denote the collection of
open covers of X. In [16], Rothberger introduced the property S;(O, O).

The corresponding game for this selection principle, denoted G; (A, B),
is played similarly to the game Gg,(.A, B), but in the n-th inning TWO
chooses an element b, € A, instead of a finite set B, C A,. A play
A1,by;+ - 5 Ap, by - -+ is won by TWO if and only if the set {b,, : n € N}
belongs to B.

During the past few years it has been discovered, especially in the
case when A and B are collections of certain kinds of open covers of
a space, that these selection hypotheses can be equivalently stated in
terms of Ramseyan partition relations (see [10, 11, 17, 18]).

For positive integers n and &k the symbol (called the ordinary partition
symbol)

A — (B)g
denotes the following statement:

For each A € A and for each function f : [A]* — {1,...,k}

there are aset BC A, B€ B,and a j € {1,...,k} such that

for each Y € [B]", f(Y) =3.
Here, as usual, the symbol [A]™ denotes the set of n-element subsets of
A.

Another partition symbol (called the Baumgartner-Taylor partition
symbol) '
A= [Bl}

denotes the statement:

For each A in A and for each function f : [A4]? — {1,--- ,k}
there are a set B C A, B € B,aj € {1,---,k} and a
partition B = | J,,cy Bn of B into pairwise disjoint finite sets
such that for each {a,b} € [B]? for which a and b are not
from distinct By’s, we have f({a,b}) = j.
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In this paper we consider yet another situation where an old concept
(paracompactness) can be expressed in terms of notions that have be-
come familiar in the theory of selection principles. This fact, together
with the usual agenda in the study of selection principles, suggests a
class of spaces which ought to have important topological properties.

2. Gruenhage’s characterization of paracompactness

Our starting point is [6] where Gruenhage gives the following interest-
ing characterization of paracompactness in locally compact T>—spaces.
Gruenhage defines for a space X the following game, G*(X): Players
ONE and TWO alternately choose compact subsets K, and L, re-
spectively in inning n, where n ranges over the positive integers. The
rules of the game are that for each n we have K, N L, = (. A play
(K1, Ly; -+ ; K, Ly, - +) is a win for ONE if the set {L, : n € N} is
locally finite; else, TWO wins.

THEOREM 1 (Gruenhage). For a locally compact To space X the
following are equivalent:

(1) X is paracompact;
(2) ONE has a winning strategy in G*(X).

3. Converting to the arena of selection principles

A family M of nonempty compact subsets of a space X is a moving-
off family if for each compact set K there is a set M € M such that
KnM =0 ([12)).

If X is a non-compact space, then its compact subsets form a moving-
off family in X. Indeed, if K C X is compact, choose any z € X \ K
and one has {z} N K = 0.

We define (for a space X):

e M := {M: M is a moving-off family on X},
e £:={L: L is an infinite locally finite family of compact subsets
of X}.

Having in mind Theorem 1, the next theorem gives another charac-
terization of paracompactness in the class of locally compact Hausdorff
spaces.
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THEOREM 2. For any non-compact topological space X the following
are equivalent:

(a) ONE has a winning strategy in G*(X);
(b) TWO has a winning strategy in Gy (901, £).

Proof . (@) = (b): Let o be a winning strategy for ONE in G*(X). We
define a strategy 7 for TWO in the game G1 (90, £). Let M be a moving-
off family in X chosen by ONE in the first move of the game G;(9M, £).
TWO looks at K; = o({)-the first move of ONE in G*(X)-and chooses
7(M;1) = L1 € My such that L1 NK; = 0, which is possible because My
is moving-off; this is a legitimate move for TWO in G*(X). Let Mg € M
be the second move of ONE in G{(9, £). TWO looks at Ky = o(L1)-
the second move of ONE in G*(X)-and chooses 7(Mi, M3) = L2 € M»
such that L, N K> = @, and so on. Since ¢ wins for ONE in G*(X),
{L1,La,...} € & 1e., 7 wins for TWO in G; (9, £).

(b) = (a): Let 7 be a winning strategy for TWO in G1(9, £). We
shall define a strategy o for ONE in G*(X). Let '

& :={K : K a compact subset of X and for any M € M, 7(M) # K}.

CLAIM: & ¢ M.

Suppose & € M. Then & is a legal move for ONE in Gi(IM, £).
Consider TWO’s response C = 7(&;). Then C € & by rules of the
game; on the other hand, by definition of & we have C ¢ &1, and we
have a contradiction.

Therefore, & ¢ M. Choose K; = o(0) such that for each K € &,
Ky N K # 0. For any response Ly by TWO (in G*(X)), LiN K, =@ so
that Ly ¢ & . Let M; be a moving-off family such that L, = T(My).

Define now

& :={K eC(X): for any M e M, 7(My, M) # K},

where C(X) is the family of compact subsets of X. In a similar way
as it was shown that & is not moving-off one may prove that &; is not
moving-off. Choose a compact set K2 C X such that for all K € &,
KoNK # 0; let Ky = o(Ly). If TWO’s response is Ly, then Ly N K3 =
implies Ly ¢ &. So, choose M2 € M such that Ly = 7(M1, M2); and so
on. TWO wins the game Gy (9%, £), so that {T7(M;),7(M1,My3),...} =
{Ly,Ly,...} € £, ie., o is a winning strategy for ONE in G*(X). [

With minor modifications in the previous proof one proves:
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THEOREM 3. For any non-compact topological space X the following
are equivalent:
(a) TWO has a winning strategy in G*(X);
(b) ONE has a winning strategy in G1 (9, £).

ExAMPLE. Theorems 1 and 2 state that for locally compact 15 spaces
the following are equivalent:

1. The space is paracompact,

2. TWO has a winning strategy in the game G; (91, £).
The assumption T5 in this statement is important. Example 54 of [19] is
locally compact non-T; and TWO has a winning strategy in Gz (90, £),
but the space is not paracompact.

4. Basic properties of 9t and £

LEMMA 4. Each (infinite) element of £ is in 9.

Proof. Let £ be an element of £ which does not belong to 9. There
exists a compact set K C X such that K N L # @ for each L € L. For
each z € K choose a neighborhood O, of x intersecting only finitely
many members of £. From the open cover {Og : z € K} of K choose a
finite subcover {Oy,,...Og,}. It follows that K intersects only finitely
many elements from £, which is a contradiction. O

LEMMA 5. For each positive integer k, I — (9M)}.

Proof. Let M be a moving-off family in X and M = My U--- U
M. Assume no M;, 1 < i < k, is moving-off. Choose compact sets
Ki,...,Ky in X such that for each i = 1,...,k, for each C € M,
CNK; # 0. Then the compact set K = K; U--- U Ky witnesses
M ¢ M. O

LEMMA 6. For each M in M, and for each compact subset K of X,
Mg ={MeM:KNM =0} isin M.

Proof. Suppose Mg ¢ 9. Then there is a compact set ® in X
“such that ® N M # ( for each M € Mg. On the other hand, for the
compact set K U® there is a set My € M with MyN(KU®) = @. Thus
My N K = §, which implies Mg € Mg, and My N & = and we have a
contradiction. O

LEMMA 7. If f : X — Y is a perfect mapping and X satisfies
S1(9M, L), then Y also has the same property.
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Proof. Let (My, : n € N) be a sequence of moving-off families in Y.
Using perfectness of f it is easy to check that (f~(My,):n € N)isa
sequence of moving-off families in X. Since X has property S;(9M, £),
for each n there is a set L, € M, such that {f~(L,) : n € N} is a
locally finite family (of compact sets) in X. Perfect mappings preserve
local finiteness (Lemma 3.10.11 in [4]) so that {L, : n < oo} is a locally
finite family in Y. O

5. Consequences of S; (9, £)

LeEMmMmA 8. Let X be locally compact Ty but not compact. If X
satisfies Sy (M, £), then each element of M has a countably infinite subset
which is an element of L.

Proof. Let M be an element of 9. We must find a countably infinite
subset N of M such that A is in £. We show something slightly more
general first:

For each sequence (K,, : n € N) of elements of 9 there is a
sequence (K, : n € N) such that for each n we have K, € K,,,
{Ky, :n € N} isin £, and is infinite.

Let (K, : n € N) be a sequence of elements of 9. Applying S; (90, £)
we choose for each n an L,, € K,, such that {L, : n € N} is in £. If this
set of L,’s is infinite we are done. So assume it is finite, and choose n
so that {L,:n €N} ={L;:j <ni}. Now K; = L; is a compact
set.

Choose an open set V7 such that Ky C V4, and V; is compact; this is
possible because of local compactness of X. Then for each 5 > n; put
ICJZ-Z{KGICj:KﬂVl=@}.

By Lemma 6, the sequence (ICJ2 :n1 < j < 00) is a sequence of
members of M. Again, apply S;(9M, £) to this sequence to obtain a
sequence (sz :ny < j < o0) where for each such 7 we have LJ2~ € IC]2-,
and {L} :ny < j < oo} isin £. If this set is infinite, we are done. Else,
there is an ng > n; such that {L? T <j<oo}= {L? tny < j < mngl.
Then define Kz = U, j<n, L]2~.

Since K> is compact and disjoint from the compact set V3, again by
local compactness of X, we find an open set V2 D K3 such that V5 is
compact and also disjoint from Vi. For each j > no define: IC;-’ ={K ¢

ICJQ.:KOVZZ(Z)}, and so on.

J<n1
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Either at some finite stage of this construction an infinite selector for
the original sequence of K,’s is obtained, or else the collection {L; : j <
ni}uU {L? :m1 < j <me}U--- is an infinite, locally finite (as witnessed
by the V,,’s) selector. O

THEOREM 9. For X non-compact, but locally compact T3, the fol-
lowing are equivalent:

(1) ONE has no winning strategy in the game G1(9M, £);
(2) S1(M, £);

(3) San(M, £);

(4) ONE has no winning strategy in the game Ggn (9, £).

Proof. (1) = (2): By standard arguments.

(2) = (1): Let X be as in the hypotheses and let ¢ be a strategy for
ONE in the game G; (M, £). We show that there is a g-play which is lost
by ONE. To this end we construct compact sets (Ln, ... n, 1 11, 51k <
0o) such that:

(1) (Ly : n € N) is infinite and in £;

(ii) For each ni,--- ,ngk, (Lny, npn : 7 € N) is infinite and in £.
Namely: (L, : n € N) is a subset of ¢(@), the first move of ONE. An
infinite set like this exists by the preceding lemma. Next, for each n,
pretend L, is TWO’s move and consider ONE’s response o(Ly), an
element of M. Applying the preceding lemma again we find an infinite
set (Lpk : k < 00) in £ which is a subset of 0(L,). Then with Ly,
and Ly, n, given, consider o(Ln,, Lin; n,), & move by ONE and so an
element of M. Applying Lemma 8 once more we find an infinite set
(L nok + k < 00) in £, contained in o(Ly,, Ln, n,), and so on.

Now we construct a play for TWO against o, which defeats 0. To
begin, TWO chooses L;. By local compactness of X choose an open set
Vi O Ly with Vi compact. Applying Lemma 4, choose an ng so that
Lipn, N Vi = 0. Then choose an open set Vo D Ly, with V5 compact
and disjoint from V7. Again use Lemma 4 and choose ng so that Lj n, n,
is disjoint from V; U V3, and so on.

The so constructed sequence

Ll, Ll,nza Ll,n2,n37 T

is a legal sequence of moves by TWO and is in £ — whence ONE lost
the corresponding play, even though ONE was using the strategy o.

(3) = (2): Let (M, : n < 00) be a sequence of elements of 9. We
define for each n:
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Ny = {MlU---UMnil S’LSTL,MZEMz}
Now for each n choose a finite set F,, C N, such that Upen Fn is an
element of £. Let {k1,--- ,kp, -} enumerate the infinite set {k : F #
P}. Write .
Fy; = M{U---UMj]_for all j.
Now put
I = { M;  if j <k,
]\4z ifk; 1 <j<k;.
Each L; is an element of M; and {L; : j < o} € £. So, we found a
sequence witnessing S; (9, £).
(2) = (3) is obvious and (4) = (3) is standard.
(3) = (4): It is proven similarly to the proof of (2) = (1). O

COROLLARY 10. If X is a locally compact, but not compact, To—space
such that S1(9M, £) holds, then for each positive integer k, 9 — (£)2.

Proof . It follows from Lemma 5 and Theorem 1 from [11]. O
Using this result, by standard induction on n and &, one obtains also

COROLLARY 11. If X is a locally compact, but not compact, To—space
such that $1(9M, £) holds, then for each n and k in N, 9 — (£)}.

6. Selection hypothesis from Ramseyan hypothesis—a differ-
ent version of “selectable pair”

In [11], we introduced the notion of selectable pair (A,B) in order
to find general results showing when partition relations imply selection
hypotheses. We define now another version of that notion.

A pair (A, B) is “dually selectable” if:

(DS1) A and B are subsets of P(P(S5));

(DS2) IfU € Ais countable and f U — N is a function, and (Vh:n€eN)
is a sequence of elements of A, then also {AUB : A€ U, B ¢
V( A)} is an element of A.

(DS3) Each element of A has a countable subset which is an element of
A.

(DS4) Foreach A € Aandforeach K € A, P{ZC S: K C Z})nB = .

(DS5) If B isin B and F' C B is finite, then B\ F is in B.

(DS6) If C is a countable set of subsets of S such that
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(1) (3B e B)({be B: (3IX € C)(X C b)} € B) and
(2) (VX eC)3Ac A)(X e A)
then C is a member of B.

For locally compact, but non-compact To—spaces, (M, £) (defined in
the beginning of the paper) is a “dually selectable pair”.

" Following proofs of Theorems 4 and 5 in [11], and making the neces-
sary small adjustments, one obtains:

THEOREM 12. If (A, B) is a “dually selectable pair”, then:

(1) If for each k € N, A — [B]3, then Sg,(A, B) holds.
(2) If for each k € N, A — (B)3, then S1(A, B) holds.

The last theorem, Theorem 9, Lemma 5 and Theorem 1 from [11]
give the following important corollary.

COROLLARY 13. Let X be a non-compact, locally compact To—space.
Then the following are equivalent:
(1) X satisfies S1(9M, £);
(2) ONE has no winning strategy in the game G1(, £);
(3) For eachn and k in N, 91— (£)}.

Let us mention that this result can be compared with a similar result
from [7] (Theorem 2.3). The game in that theorem is similar to our game
G1(9M, £), and the part (i) from [7] is actually our (3) withn =4k = 1.

7. Another selection principle and paracompactness

In 1973, W. Haver|8] introduced a covering property for metric spaces
called property C. In [1], Addis and Gresham reformulated the original
definition of C in a form much more convenient for use in general topol-

ogy:

A topological space X has property C if for each sequence (Up, : n € N)
of open covers of X there is a sequence (V, : n € N) of families of open
subsets of X satisfying the following three conditions:

(1) For each n € N, V, is a disjoint family;
(2) For each n € N, V, <Up;
(3) Upen Vn is an open cover of X.

In [2], this property was denoted by Sc.(O,0). [2] also defined and
studied as a general selection principle Sc(A,B), where A and B are
collections of families of subsets of a space X.
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We define now the following general selection principle.

Let X be a topological space and let A and B denote collections
whose elements are families of open subsets of X. The symbol Si;(A, B)
denotes the following statement:

For each sequence (U, : n € N) of elements of A there is
a sequence (V, : n € N) such that for each n € N, V, is a
locally finite family with V, < Uy, (= for each V' € V), there
isaU €U, with V C U) and [J,en Vi € B.

It is clear that Sg, (A, B) implies Sis(A, B).
Let us introduce the following notation (for a space X):

o O the collection of open covers of X;

e  the collection of w-covers of X; an open cover Y of X is an
w-cover if X is not a member of U and for each finite subset F' of
X thereis a U € U such that FF C U.

e T the collection of y-covers of X; an open cover U of X is called a
~-cover if it is infinite and for each z € X theset {U e U : x ¢ U}
is finite.

From the definitions it follows that every paracompact space (no sep-
aration axiom is assumed) satisfies 5;¢(O, O).

We shall see now that in the class of regular spaces paracompactness
can be characterized by Sis(.A, B) properties.

THEOREM 14. Let X be a regular space. The following are equivalent:
(a) X is paracompact;

(b) X satisfies Si¢(O, O);

(¢) X satisfies Sy(2, O).

Proof . (a) = (b): Trivial.
(b) = (c): It follows from the fact 2 C O.

(c) = (b): Let (Up : n € N) be a sequence of open covers of X. Let
N = N; UNy U ... be a partition of N into countably many pairwise
disjoint infinite subsets. For every n € N let V,, be the set of elements of
the form U,, U---UUp,, k € N, n; <ng < -+ <ng € Ny, Uy, € Up, for
alli =1,2,...,k. The sequence (V, : n € N) is a sequence of w-covers of
X. Apply Si:(©, O) to the later sequence to find a sequence (W, : n € N)
such that for each n W, is locally finite, W, < V,, and U, ey Whn is an
open cover of X. For each n and each W € W, choose Vi € V, such
that W C Viy. U Vg =Up, U---UU,,n1 <ng < -+ < ny € Ny,
Un; € Uy, for i = 1,2,...,k, then choose all the sets U,, N W which
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are nonempty and denote by H(W) the family of sets chosen in this
way. Let Hy, = U{H(W) : W € W,}. Then the sequence (H, : n € N)
witnesses for (U, : n € N) that X satisfies S;¢(O, O).

(b) = (a): Let U be an open cover of X. Applying (b) to the se-
quence (U, = U : n € N) we find a o-locally finite refinement of /. By
Michael’s characterization of paracompactness ([4]) we conclude that X
is paracompact. ]

The following two theorems show that for some “nice” families of
open covers the selection principle Sy coincides with the principle Sgp.

THEOREM 15. Sy(2,T") implies Sg, (2, T') = S1(2,T).

Proof. Let (U, : n € N) be a sequence of w-covers of X. Choose for
each n a locally finite collection V,, < U, such that UneN V, eI'. We
show that each V), is in fact finite. Suppose there is some k for which
Vy is infinite. Take any x € X. Then, x belongs to all but finitely many
elements of | J,cn Vn, hence to infinitely many members of V4. On the
other hand, there is a neighborhood O, of z intersecting finitely many
elements of Vj. A contradiction. Sg,(Q,T) = $1(R,T") was proved in
[10). O

- THEOREM 16. Sy(€2, ) implies Sgn (2, ©2).

Proof. Let (U, : n € N) be a sequence of w-covers of X. For each n
pick a locally finite collection V,, < Uy, such that (J, oy Va is an w-cover
of X. We prove that each V, is finite. Let  be any point in X. Then
for each n, x belongs to finitely many members of V,,. Let K be a finite
subset of X. The set K U{x} is finite, hence there are a natural number
mand V € V,, with KU {z} C V. This means that K must be actually
contained in one of finitely many members in V,, that contain z. O
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