DOI QR코드

DOI QR Code

Polishing Mechanism of TEOS-CMP with High-temperature Slurry by Surface Analysis

  • Kim, Nam-Hoon (Research Institute of Energy Resources Technology, Chosun University) ;
  • Seo, Yong-Jin (Department of Electrical and Electronic Engineering, Daebul University) ;
  • Ko, Pil-Ju (Department of Electrical Engineering, Chosun University) ;
  • Lee, Woo-Sun (Department of Electrical Engineering, Chosun University)
  • Published : 2005.08.01

Abstract

Effects of high-temperature slurry were investigated on the chemical mechanical polishing (CMP) performance of tetra-ethyl ortho-silicate (TEOS) film with silica and ceria slurries by the surface analysis of X-ray photoelectron spectroscopy (XPS). The pH showed a slight tendency to decrease with increasing slurry temperature, which means that the hydroxyl $(OH^-)$ groups increased in slurry as the slurry temperature increased and then they diffused into the TEOS film. The surface of TEOS film became hydro-carbonated by the diffused hydroxyl groups. The hydro-carbonated surface of TEOS film could be removed more easily. Consequently, the removal rate of TEOS film improved dramatically with increasing slurry temperature.

Keywords

References

  1. P. B. Zantyea, A. Kumara, and A. K. Sikder, 'Chemical mechanical planarization for microelectronics applications', Mat. Sci. Eng. R, Vol. 45, Iss. 3-6, p. 89, 2004
  2. M. Biemann, U. Mahajan, and R. K. Singh, 'Effect of particle size during tungsten chemical mechanical polishing', Electrochem. Solid St., Vol. 2, Iss. 8, p. 401, 1999
  3. M. Bielmann, U. Mahajan, R. K. Singh, D. O. Shah, and B. J. Palla, 'Enhanced tungsten chemical mechanical polishing using stable alumina slurries', Electrochem. Solid St., Vol. 2, Iss. 3, p. 148, 1999
  4. Y. J. Seo, S. Y. Kim, Y. O. Choi, Y. T. Oh, and W. S. Lee, 'Effects of slurry filter size on the chemical mechanical polishing (CMP) defect density', Mater. Lett., Vol. 58, Iss. 15, p. 2091, 2004
  5. G. B. Basim, J. J. Adler, U. Mahajan, R. K. Singh, and B. M. Moudgil, 'Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects', J. Electrochem. Soc., Vol. 147, Iss. 9, p. 3523, 2000
  6. J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, 'Chemical Mechanical Planarization of Microelectronic Materials', John Wiley and Sons, New York, p. 40, 1997
  7. P.-J. Ko, S.-W. Park, N.-H. Kim, Y-J. Seo, and W.-S. Lee, 'Polishing properties by change of slurry temperature in oxide CMP', J. of KIEEME(in Korean), Vol. 18, No.3, p. 219, 2005
  8. Y. J. Seo and W. S. Lee, 'Chemical mechanical polishing of $Ba_{0.6}Sr_{0.4}TiO_3$ film prepared by sol-gel method ', Microelectron. Eng., Vol. 75, Iss. 2, p. 149, 2004
  9. S. W. Park, C. B. Kim, S. Y. Kim, and Y. J. Seo, 'Design of experimental optimization for ULSI CMP process applications', Microelectron. Eng., Vol. 66, Iss. 1-4, p. 488, 2003 https://doi.org/10.1016/S0167-9317(03)00016-9
  10. M. R. Oliver, 'Chemical-mechanical Planarization of Semiconductor Materials', Springer-Verlag, Heidelberg, p. 217, 2004
  11. J. M. Steigerwald, S. P. Murarka, and R. J. Gutmann, 'Chemical Mechanical Planarization of Microelectronic Materials', John Wiley and Sons, New York, p. 137, 1997
  12. W. Li, D. W. Shin, 'M. Tomozawa, and S. P. Murarka, 'The effect of the polishing pad treatments on the chemical-mechanical polishing of sio. films', Thin Solid Films, Vol. 270, Iss. 1-2, p. 601, 1995 https://doi.org/10.1016/0040-6090(95)06833-3
  13. C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. T. Jansen, and J. A. Taylor, 'Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds', J. Vac. Sci. Technol., Vol. 21, No.4, p. 933, 1982
  14. K. L. Smith and K. M. Black, 'Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC [artificial heat values]', J. Vac. Sci. Technol. A, Vol. 2, No.2, p. 744, 1984
  15. J. J. Pireaux, J. Riga, R. Caudano, J. J. Verbist, J. Delhalle, S. Delhalle, J. M. Andre, and Y. Gobillon, 'Polymer primary structures studied by ESCA and EHCO methods', Phys. Scripta, Vol. 16, No. 5-6, p. 329, 1977
  16. J. M. Burkstrand, 'Copper-polyvinyl alcohol interface: a study with XPS', J. Vac. Sci. Technol., Vol. 16, No.2, p. 363, 1979
  17. D. T. Clark and H. R. Thomas, 'Applications of ESCA to polymer chemistry. XI. Core and valence energy levels of a series of polymethacrylates', J. Polym. Sci. Pol. Chem. Ed., Vol. 14, No.7, p. 1701, 1976
  18. D. T. Clark and H. R. Thomas, 'Applications of ESCA to polymer chemistry. XVII. Systematic investigation of the core levels of simple homopolymers', J. Polym. Sci. Pol. Chem. Ed., Vol. 16, No.4, p. 791, 1978
  19. J. S. Hammond, J. W. Holubka, J. E. deVries, and R. A. Dickie, 'The application of x-ray photo-electron spectroscopy to a study of interfacial composition in corrosion-induced paint de-adhesion', Corros. Sci., Vol. 21, Iss. 3, p. 239, 1981
  20. F. C. Bums and J. D. Swalen, 'X-ray photoelectron spectroscopy of cadmium arachidate mono1ayers on various metal surfaces', J. Phys. Chem., Vol. 86, Iss. 26, p. 5123, 1982
  21. F. P. J. M. Kerkhof, J. A. Moulijn, and A. Heeres, 'The XPS spectra of the metathesis catalyst tungsten oxide on silica gel', J. Electron Spectrosc., Vol. 14, Iss. 6, p. 453, 1978