Proteomics-driven Identification of Putative AfsR2-target Proteins Stimulating Antibiotic Biosynthesis in Streptomyces lividans

  • Published : 2005.06.01

Abstract

AfsR2, originally identified from Streptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression of afsR2 significantly induced antibiotic production as well as the sporulation of S. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-type S. lividans and the afsR2-integrated actinorhodin overproducing strain. The 20 gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these two S. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine penta phosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes in Streptomyces species.

Keywords

References

  1. Chater, K. F. (1990) Multilevel regulation of Streptomyces differentiation. Trends Genet. 5: 372-377 https://doi.org/10.1016/0168-9525(89)90172-8
  2. Hopwood, D. A. (1987) Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc. R. Soc. Lond. Series B. 235: 2257-2269
  3. Nakamura Y., C. Asada, and T. Sawada (2004) Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biocechnol. Bioprocess Eng. 8: 37-40
  4. Champness, W. C. and K. F. Chater (1994) Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp. pp. 61-93. In: P. J. Piggot, C. P. Moran Jr., and P. Youngman (eds.). Regulation of Bacterial Differentiation. American Society for Microbiology, Washington D.C., USA
  5. Kim J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnol. Bioprocess Eng. 9: 459-464 https://doi.org/10.1007/BF02933486
  6. Lee, K. J. and J. Y. Lim (2004) Optimized conditions for high erythritol production by Penicillium sp. KJ-UV29, mutant of Penicillium sp. KJ81. Biocechnol. Bioprocess Eng. 8: 173-178
  7. Champness, W. C., P. Riggle, T. Adamidis, B. Kenney, and D. Aceti (1993) Genetic elements involved in global antibiotic regulation in Streptomyces coelicolor. pp. 227- 233. In: R. Baltz et al. (eds.). Industrial Microorganisms: Basic and Applied Molecular Genetics. American Society for Microbiology, Washington D.C., USA
  8. Hara, O., S. Horinouchi, T. Uozumi, and T. Beppu (1983) Genetic analysis of A-factor synthesis in Streptomyces coelicolor A3(2) and Streptomyces griseus. J. Gen. Microbiol. 129: 2939-2944
  9. Horinouchi, S., O. Hara, and T. Beppu (1983) Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J. Bacteriol. 155: 1238-1248
  10. Horinouchi, S., M. Kito, M. Nishiyama, K. Furuya, S. K. Hong, K. Miyake, and T. Beppu (1992) Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene 95: 49-56 https://doi.org/10.1016/0378-1119(90)90412-K
  11. Stein, D. and S. N. Cohen (1989) A cloned regulatory gene of Streptomyces lividans can suppress the pigment deficiency phenotype of different development mutants. J. Bacteriol. 171: 2258-2261 https://doi.org/10.1128/jb.171.4.2258-2261.1989
  12. Vogtli, M., P. C. Chang, and S. N. Cohen (1994) afsR2: A previously undeleted gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Mol. Microbiol. 14: 643-653 https://doi.org/10.1111/j.1365-2958.1994.tb01303.x
  13. Matsumoto, A., H. Ishizukz, T. Beppu, and S. Horinouchi (1995) Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3(2). Actinomycetologica. 9: 37- 43 https://doi.org/10.3209/saj.9_37
  14. Kim, E.-S., H.-J. Hong, C.-Y. Choi, and S. N. Cohen (2001) Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J. Bacteriol. 183: 2198-2203 https://doi.org/10.1128/JB.183.7.2198-2203.2001
  15. Kim, C.-Y., H.-J. Park, Y. J. Yoon, H.-Y. Kang, and E.-S. Kim (2004) Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
  16. Oakley, B. R., D. R. Kirsch, and N. R. Morris (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363 https://doi.org/10.1016/0003-2697(80)90470-4
  17. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann (1996) Mass spectrometric sequencing of proteins from silverstained polyacrylamide dels. Anal. Chem. 68: 850-858 https://doi.org/10.1021/ac950914h
  18. Kormanec, J., A. Lempel'ova, R. Novakova, B. Rezuchova, and D. Homerova (1997) Expression of the Streptomyces aureofaciens glyceraldehyde-3-phosphate dehydrogenase gene (gap) is developmentally regulated and induced by glucose. Microbiology 143: 3555-3561 https://doi.org/10.1099/00221287-143-11-3555
  19. Sprusansky, O., B. Rezuchova, D. Homerova, and J. Kormanec (2001) Expression of the gap gene encoding glyceraldehyde- 3-phosphate dehydrogenase of Streptomyces aureofaciens requires GapR, a member of the AraC/XylS family of transcriptional activators. Microbiology 147: 1291-1301 https://doi.org/10.1099/00221287-147-5-1291
  20. Umeyama, T., A. Naruoka, and S. Horinouchi (2000) Genetic and biochemical characterization of a protein phosphatase with dual substrate specificity in Streptomyces coelicolor A3(2). Gene 258: 55-62 https://doi.org/10.1016/S0378-1119(00)00450-9
  21. Vomastek, T., R. Nadvornik, J. Janecek, Z. Technikova, J. Weiser, and P. Branny (1998) Characterisation of two putative protein Ser/Thr kinases from actinomycete Streptomyces granaticolor both endowed with different properties. Eur. J. Biochem. 257: 55-61 https://doi.org/10.1046/j.1432-1327.1998.2570055.x
  22. Chung, H. J., J. H. Choi, E. J. Kim, Y. H. Cho, and J. H. Roe (1999) Negative regulation of the gene for Fecontaining superoxide dismutase by an Ni-responsive factor in Streptomyces coelicolor. J. Bacteriol. 181: 7381- 7384
  23. Folcher, M., H. Gaillard, L. T. Nguyen, K. T. Nguyen, P. Lacroix, N. Bamas-Jacques, M. Rinkel, and C. J. Thompson (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem. 276: 44297-44306 https://doi.org/10.1074/jbc.M101109200
  24. Yoon, Y. J., B. J. Beck, B. S. Kim, H.-Y. Kang, and K. A. Reynolds (2002) Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem. Biol. 9: 203-214 https://doi.org/10.1016/S1074-5521(02)00095-9
  25. Cashel, M., D. R. Gentry, V. J. Hernandez, and D. Vinella (1996) The stringent response. pp. 1458-1496. In: R. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Rezniko, M. Riley, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. , Washington, D.C., USA
  26. Martinez-Costa, O. H., P. Arias, N. M. Romero, V. Parro, R. P. Mellado, and F. Malpartida (1996) A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. J. Biol. Chem. 271: 10627-10634 https://doi.org/10.1074/jbc.271.18.10627
  27. Chakraburtty, R. and M. Bibb (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J. Bacteriol. 179: 5854-5861 https://doi.org/10.1128/jb.179.18.5854-5861.1997
  28. Glass, R. E., S. T. Jones, and A. Ishihama (1986) Genetic studies on the $\beta$ subunit of Escherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp. Mol. Gen. Genet. 203: 265-268 https://doi.org/10.1007/BF00333964
  29. Ochi, K. (1987) Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: Signifi cance of the stringent response (ppGpp) and GTP content in relation to A factor. J. Bacteriol. 169: 3608-3616 https://doi.org/10.1128/jb.169.8.3608-3616.1987
  30. Kelly, K. S., K. Ochi, and G. H. Jones (1991) Pleiotropic effects of a relC mutation in Streptomyces antibioticus. J. Bacteriol. 173: 2297-2300 https://doi.org/10.1128/jb.173.7.2297-2300.1991
  31. Sohlberg B., J. Huang, and S. N. Cohen (2003) The Streptomyces coelicolor polynucleotide phosphorylase homologue, and not the putative poly(A) polymerase, can polyadenylate RNA. J. Bacteriol. 185: 7273-7278 https://doi.org/10.1128/JB.185.24.7273-7278.2003