References
- Anderl, J. N., M. J. Franklin, and P. S. Stewart. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44: 1818-1824 https://doi.org/10.1128/AAC.44.7.1818-1824.2000
- Arciola, C. R., L. Baldassarri, and L. Montanaro. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 39: 2151-2156 https://doi.org/10.1128/JCM.39.6.2151-2156.2001
- Baselga, R., J. Albizu, M. De la Cruz, E. Del Cacho, M Barberan, and B. Amorena. 1993. Phase variation of slime production in Staphylococcus aureus: Implications in colonization and virulence. Infect. Immun. 61: 4857-4862
- Bezek, D. M. 1998. Genus identification and antibiotic susceptibility patterns of bacterial isolates from cows with acute mastitis in a practice population. J. Am. Vet. Med. Assoc. 212: 404-406
- Chambers, H. F. 1988. Methicillin-resistant staphylococci. Clin. Microbiol. Rev. 1: 173-186 https://doi.org/10.1128/CMR.1.2.173
- Chang, M. M. and K. Merritt. 1992. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res. 26: 197-207 https://doi.org/10.1002/jbm.820260206
- Cho, S. H., K. Naber, J. Hacker, and W. Ziebuhr. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int. J. Antimicrob. Agents 19: 570-575 https://doi.org/10.1016/S0924-8579(02)00101-2
- Christensen, G. D., W. A. Simpson, A. L. Bisno, and E. H. Beachey. 1982. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37: 318-326
- Christensen, G. D., W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996-1006
- Christensen, G. D., L. Baldassarri, and W. A. Simpson. 1994. Colonization of medical devices by coagulase-negative staphylococci, pp. 45-78: In A. L. Bisno and F. A. Waldvogel (eds.), Infections Associated with Indwelling Medical Devices, 2nd Ed. ASM Press, Washington, D.C., U.S.A
- Chung, T. w., U. H. Jin, and C. H. Kim. 2003. Salmonella typhimurium LPS confers its resistance to antibacterial agents of baicalin of Scutellaria baicalensis george and novobiocin: Complementation of the rfaE gene required for ADP-L-glycero-D-manno-heptose biosynthesis of lipopolysaccharide. J. Microbiol. Biotechnol. 13: 564-570
- Emori, T. G. and R. P. Gaines. 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6: 428-442 https://doi.org/10.1128/CMR.6.4.428
- Frebourg, N. B., S. Lefebvre, S. Baert, and J. F. Lemeland. 2000. PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J. Clin. Microbiol. 38: 877-880
- Galdbart, J. O., J. Allignet, H. S. Tung, C. Ryden, and N. El Solh. 2000. Screening for Staphylococcus epidermidis markers discriminating skin-flora strains and those responsible for infections of joint prostheses. J. Infect. Dis. 182: 351-355 https://doi.org/10.1086/315660
- Gerke, C., A. Kraft, R. SliBmuth, O. Schweitzer, and F. G6tz. 1998. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin (PIA). J. Biol. Chem. 273: 18586-18593 https://doi.org/10.1074/jbc.273.29.18586
- Gristina, A. G, P. Naylor, and Q. Myrvik. 1988. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 14: 205-224
- Heilmann, C., C. Gerke, F. Perdreau-Remington, and F. Gotz. 1996. Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277-282
- Heilmann, C., O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack, and F. Gotz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083-1091 https://doi.org/10.1111/j.1365-2958.1996.tb02548.x
- Heilmann, C., M. Hussain, G Peters, and F. Gotz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24: 1013-1024 https://doi.org/10.1046/j.1365-2958.1997.4101774.x
- Henry, S. L. and K. P. Galloway. 1995. Local antibacterial theraphy for the management of orthopaedic infections. Pharmacokinetic considerations. Clin. Pharmacokinet. 29: 36-45 https://doi.org/10.2165/00003088-199529010-00005
- Hussain, M., M. Heilmann, C. von Eiff, F. Pedreau-Remington, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519-524
- Jirku, V., J. Masak, and A. Cejkova. 2001. Reduced susceptibility of a model Saccharomyces cerevisiae biofilm to osmotic upshifts. J. Microbiol. Biotechnol. 11: 17-20
- Kloos, W. E. and T. L. Bannerman. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 7: 117-140 https://doi.org/10.1128/CMR.7.1.117
- Lewis, K. 2001 Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999-1007 https://doi.org/10.1128/AAC.45.4.999-1007.2001
-
MaCK, D., W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge, and R. Laufs. 1996. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear
${\beta}$ -1,6-linked glucosaminoglycan: Purification and structural analysis. J. Bacteriol. 178: 175-183 https://doi.org/10.1128/jb.178.1.175-183.1996 - Nilsson, M., L. Frykberg, J. J. Flock, L. Pei, M. Lindberg, and B. Gruss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66: 2666-2673
- Potera, C. 1999. Forging a link between biofilms and disease. Science 283: 1837-1838 https://doi.org/10.1126/science.283.5409.1837
- Rupp, M. E. and G. L. Archer. 1994. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin. Infect. Dis. 19: 231-245 https://doi.org/10.1093/clinids/19.2.231
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., U.S.A
- Schumacher-Perdreau, P., C. Heilmann, G Peters, F. Gotz, and G. Pulverer. 1994. Comparative analysis of a biofilmforming Staphylococcus epidermidis strain and its adhesionpositive, accumulation-negative mutant M7. FEMS Microbial. Lett. 117: 71-78 https://doi.org/10.1111/j.1574-6968.1994.tb06744.x
- Shin, J. W, J. K. Kang, K. J. Jang, and K. Y. Kim. 2002. Intestinal colonization characteristics of Lactobacillus spp. isolated from chicken cecum and competitive inhibition against Salmonella typhimurium. J. Microbiol. Biotechnol. 12: 576-582
- Stewart, P. S. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292: 107-113 https://doi.org/10.1078/1438-4221-00196
- Stone, G, P. Wood, L. Dixon, M. Keyhan, and A. Matin. 2002. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob. Agents Chemother. 46: 2458-2461 https://doi.org/10.1128/AAC.46.8.2458-2461.2002
- Tack, K. J. and L. D. Sabath. 1985. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31: 204-210 https://doi.org/10.1159/000238337
- Tanaka, G, M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, and T. Usui. 1999. Effect of the growth rate of Pseudomonas aeruginasa biofilms on the susceptibility to antimicrobial agents: Beta-Iactams and tluoroquinolones. Chemotherapy 45: 28-36 https://doi.org/10.1159/000007162
- Van de Belt, H., D. Neut, W Schenk, J. R. van Horn, H. C. van Der Mei, and H. C. Busscher. 2001. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethracrylate bone cements. Biomaterials 22: 1607-1611 https://doi.org/10.1016/S0142-9612(00)00313-6
- Walters III, M. C., F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprotloxacin and tobramycin. Antimicrob. Agents Chemother. 47: 317-323 https://doi.org/10.1128/AAC.47.1.317-323.2003
- Zabinski, R. A., K. J. Walker, A. J. Larsson, J. A. Moody, G W. Kaatz, and J. C. Rotschafer. 1995. Effect of aerobic and anaerobic environments on anti staphylococcal activities of five fluoroquinolones. Antimicrob. Agents Chemother. 39: 507-512 https://doi.org/10.1128/AAC.39.2.507
- Ziebuhr, W, C. Heilmann, F. G6tz, P. Meyer, K. Wilms, E. Straube, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890-896
- Ziebuhr, W, V. Krimmer, S. Rachid, J. Loessner, F. Gotz, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: Evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbial. 32: 345-356 https://doi.org/10.1046/j.1365-2958.1999.01353.x