Browse > Article

Comparison of Antibiotic Resistance of Blood Culture Strains and Saprophytic Isolates in the Presence of Biofilms, Formed by the Intercellular Adhesion (ica) Gene Cluster in Staphylococcus epidermidis  

CHO BONG-GUM (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health, Department of Applied Biochemistry, College of Natural Sciences, Konkuk University)
KIM CHEORL-HO (National Research Laboratory for Glycobiology, Ministry of Science and Technology of Korean Government and Department of Biochemistry and Molecular Biology, Dongguk University COM)
LEE BOK KWON (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health)
CHO SEUNG-HAK (Laboratory of Enteric Infections, Department of Microbiology, National Institute of Health)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.4, 2005 , pp. 728-733 More about this Journal
Abstract
To elucidate the question of whether biofilm formed by the intercellular adhesion (ica) gene cluster has influences on antibiotic resistance in Staphylococcus epidermidis, we compared 124 skin strains with strains isolated from 50 blood cultures that cause septicemic diseases. The results revealed that the blood culture isolates were more resistant to the antibiotics tested than the saprophytic isolates. Moreover, antibiotic multiresistance was more prevalent in the clinical isolates. In the blood culture isolates, $46\%$ of the strains were resistant to three or more antibiotics, whereas only $12\%$ of the saprophytic isolates were resistant to three or more antibiotics. Interestingly, these characteristics were highly correlated with the biofilm formed by the ica gene cluster. In biofilm-producing strains, $84\%$ of the blood culture isolates and $44\%$ of the saprophytic isolates were antibiotic multiresistant, whereas only $22\%=;and\;9\%$, respectively, were antibiotic multiresistant in biofilm-nonproducing strains. Additionally, in the biofilm-producing ica-positive strains, $89\%$ of the blood culture isolates and $57\%$ of the saprophytic isolates were antibiotic multiresistant. However, the rate of the antibiotic multiresistance in the ica-negative strains was very low, thus indicating that the biofim formed by the lea gene cluster in S. epidermidis is an important pathogenic factor in association with the antibiotic multiresistance.
Keywords
Biofilm; intercellular adhesion (ica) gene cluster; Staphylococcus epidermidis; antibiotic multiresistance;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Arciola, C. R., L. Baldassarri, and L. Montanaro. 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol. 39: 2151-2156   DOI   ScienceOn
2 Bezek, D. M. 1998. Genus identification and antibiotic susceptibility patterns of bacterial isolates from cows with acute mastitis in a practice population. J. Am. Vet. Med. Assoc. 212: 404-406
3 Galdbart, J. O., J. Allignet, H. S. Tung, C. Ryden, and N. El Solh. 2000. Screening for Staphylococcus epidermidis markers discriminating skin-flora strains and those responsible for infections of joint prostheses. J. Infect. Dis. 182: 351-355   DOI   ScienceOn
4 Henry, S. L. and K. P. Galloway. 1995. Local antibacterial theraphy for the management of orthopaedic infections. Pharmacokinetic considerations. Clin. Pharmacokinet. 29: 36-45   DOI   ScienceOn
5 Jirku, V., J. Masak, and A. Cejkova. 2001. Reduced susceptibility of a model Saccharomyces cerevisiae biofilm to osmotic upshifts. J. Microbiol. Biotechnol. 11: 17-20
6 Kloos, W. E. and T. L. Bannerman. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 7: 117-140   DOI
7 Nilsson, M., L. Frykberg, J. J. Flock, L. Pei, M. Lindberg, and B. Gruss. 1998. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect. Immun. 66: 2666-2673
8 Stewart, P. S. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292: 107-113   DOI   ScienceOn
9 Ziebuhr, W, C. Heilmann, F. G6tz, P. Meyer, K. Wilms, E. Straube, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890-896
10 Chang, M. M. and K. Merritt. 1992. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res. 26: 197-207   DOI   PUBMED
11 Shin, J. W, J. K. Kang, K. J. Jang, and K. Y. Kim. 2002. Intestinal colonization characteristics of Lactobacillus spp. isolated from chicken cecum and competitive inhibition against Salmonella typhimurium. J. Microbiol. Biotechnol. 12: 576-582
12 Lewis, K. 2001 Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999-1007   DOI   PUBMED   ScienceOn
13 Heilmann, C., O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack, and F. Gotz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083-1091   DOI   ScienceOn
14 Rupp, M. E. and G. L. Archer. 1994. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin. Infect. Dis. 19: 231-245   DOI   ScienceOn
15 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., U.S.A
16 Zabinski, R. A., K. J. Walker, A. J. Larsson, J. A. Moody, G W. Kaatz, and J. C. Rotschafer. 1995. Effect of aerobic and anaerobic environments on anti staphylococcal activities of five fluoroquinolones. Antimicrob. Agents Chemother. 39: 507-512   DOI   ScienceOn
17 Stone, G, P. Wood, L. Dixon, M. Keyhan, and A. Matin. 2002. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob. Agents Chemother. 46: 2458-2461   DOI   ScienceOn
18 Gristina, A. G, P. Naylor, and Q. Myrvik. 1988. Infections from biomaterials and implants: A race for the surface. Med. Prog. Technol. 14: 205-224
19 Heilmann, C., C. Gerke, F. Perdreau-Remington, and F. Gotz. 1996. Characterization of Tn 917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64: 277-282
20 Anderl, J. N., M. J. Franklin, and P. S. Stewart. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44: 1818-1824   DOI   ScienceOn
21 Christensen, G. D., W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996-1006
22 Ziebuhr, W, V. Krimmer, S. Rachid, J. Loessner, F. Gotz, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: Evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbial. 32: 345-356   DOI   ScienceOn
23 Walters III, M. C., F. Roe, A. Bugnicourt, M. J. Franklin, and P. S. Stewart. 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprotloxacin and tobramycin. Antimicrob. Agents Chemother. 47: 317-323   DOI   ScienceOn
24 Christensen, G. D., W. A. Simpson, A. L. Bisno, and E. H. Beachey. 1982. Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37: 318-326
25 Tanaka, G, M. Shigeta, H. Komatsuzawa, M. Sugai, H. Suginaka, and T. Usui. 1999. Effect of the growth rate of Pseudomonas aeruginasa biofilms on the susceptibility to antimicrobial agents: Beta-Iactams and tluoroquinolones. Chemotherapy 45: 28-36   DOI   ScienceOn
26 Schumacher-Perdreau, P., C. Heilmann, G Peters, F. Gotz, and G. Pulverer. 1994. Comparative analysis of a biofilmforming Staphylococcus epidermidis strain and its adhesionpositive, accumulation-negative mutant M7. FEMS Microbial. Lett. 117: 71-78   DOI   ScienceOn
27 Tack, K. J. and L. D. Sabath. 1985. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy 31: 204-210   DOI   ScienceOn
28 Chambers, H. F. 1988. Methicillin-resistant staphylococci. Clin. Microbiol. Rev. 1: 173-186   DOI
29 Cho, S. H., K. Naber, J. Hacker, and W. Ziebuhr. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int. J. Antimicrob. Agents 19: 570-575   DOI   ScienceOn
30 Heilmann, C., M. Hussain, G Peters, and F. Gotz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 24: 1013-1024   DOI   ScienceOn
31 Potera, C. 1999. Forging a link between biofilms and disease. Science 283: 1837-1838   DOI   PUBMED   ScienceOn
32 Hussain, M., M. Heilmann, C. von Eiff, F. Pedreau-Remington, and G. Peters. 1997. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519-524
33 Emori, T. G. and R. P. Gaines. 1993. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 6: 428-442   DOI
34 MaCK, D., W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge, and R. Laufs. 1996. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear ${\beta}$-1,6-linked glucosaminoglycan: Purification and structural analysis. J. Bacteriol. 178: 175-183   DOI
35 Frebourg, N. B., S. Lefebvre, S. Baert, and J. F. Lemeland. 2000. PCR-based assay for discrimination between invasive and contaminating Staphylococcus epidermidis strains. J. Clin. Microbiol. 38: 877-880
36 Van de Belt, H., D. Neut, W Schenk, J. R. van Horn, H. C. van Der Mei, and H. C. Busscher. 2001. Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethracrylate bone cements. Biomaterials 22: 1607-1611   DOI   ScienceOn
37 Gerke, C., A. Kraft, R. SliBmuth, O. Schweitzer, and F. G6tz. 1998. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin (PIA). J. Biol. Chem. 273: 18586-18593   DOI   ScienceOn
38 Baselga, R., J. Albizu, M. De la Cruz, E. Del Cacho, M Barberan, and B. Amorena. 1993. Phase variation of slime production in Staphylococcus aureus: Implications in colonization and virulence. Infect. Immun. 61: 4857-4862
39 Chung, T. w., U. H. Jin, and C. H. Kim. 2003. Salmonella typhimurium LPS confers its resistance to antibacterial agents of baicalin of Scutellaria baicalensis george and novobiocin: Complementation of the rfaE gene required for ADP-L-glycero-D-manno-heptose biosynthesis of lipopolysaccharide. J. Microbiol. Biotechnol. 13: 564-570
40 Christensen, G. D., L. Baldassarri, and W. A. Simpson. 1994. Colonization of medical devices by coagulase-negative staphylococci, pp. 45-78: In A. L. Bisno and F. A. Waldvogel (eds.), Infections Associated with Indwelling Medical Devices, 2nd Ed. ASM Press, Washington, D.C., U.S.A