Effects of Adenylate Cyclase, Guanylate Cyclase and KATP Channel Blockade on the Cerebral Blood Flow Response Induced by Adenosine A2B Receptor Agonist in the Rats

  • Youn, Doo-Sang (Department of Pharmacology, College of Medicine, Hanyang University) ;
  • Shin, In-Chul (Department of Pharmacology, College of Medicine, Hanyang University)
  • Published : 2005.03.01

Abstract

This study was performed to investigate the regulatory mechanism of cerebral blood flow of adenosine A$_{2B}$ receptor agonist in the rats, and to define whether its mechanism is mediated by adenylate cyclase, guanylate cyclase and potassium channel. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebral cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine A$_{2B}$ receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA; 4 umol/I) increased cerebral blood flow. This effect of NECA (4 umol/I) was not blocked by pretreatment with adenylate cyclase inhibitor, MDL-12,330 (20 umol/I). But effect of NECA (4 umol/I) was blocked by pretreatment with guanylate cyclase inhibitor, LY-83,583 (10 umol/I) and pretreatment with ATP-sensitive potassium channel inhibitor, glipizide (5 umol/I). These results suggest that adenosine A$_{2B}$ receptor increases cerebral blood flow. It seems that this action of adenosine A$_{2B}$ receptor is mediated via the activation of guanylate cyclase and ATP-sensitive potassium channel in the cerebral cortex of the rats.

Keywords

References

  1. Bruns, R. F., Fergus, J. H., Badger, E. W., Bristol, J. A., Santay, L. A., Hartman, J. D., Hays, S. J. and Huang, C. C. (1987). Binding of the $A_1$-selective adenosine antagonist 8-cyclopentyl-1,3-diproxylxanthine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 59-63
  2. Choca, J. I., Proudfit, H. K. and Green, R. D. (1987). Identification of $A_1$ and $A_2$ adenosine receptors in the rat spinal cord. J. Pharmacal. Exp. Ther. 242, 905-910
  3. Coney, A. M. and Marshall, J. M. (1998). Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia. J. Physiol. 509, 507-518 https://doi.org/10.1111/j.1469-7793.1998.507bn.x
  4. Dirnagl, U., Lindauer, U. and Villringer, A. (1993). Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats. Neurosci. Lett. 149, 43-46 https://doi.org/10.1016/0304-3940(93)90343-J
  5. Edvinsson, L. and Fredholm, B. B. (1983). Charaterization of adenosine receptors in isolated cerebral arteries of cat. Br. J. Pharmacol. 80, 631-637 https://doi.org/10.1111/j.1476-5381.1983.tb10052.x
  6. Fiebich, B. L., Biber, K., Gyufko, K., Berger, M., Bauer, J. and Van-Calker, D. (1996). Adenosine $A_{2b}$ receptors mediate an increase in interleukin(IL)- mRNA and IL-6 protein synthesis in human astroglioma cells. J. Neurochem. 66, 1426-1431 https://doi.org/10.1046/j.1471-4159.1996.66041426.x
  7. Fredholm, B. B., Abbrachio, M. P., Bumstock, G., Daly, J. W., Harden, T. K., Jacobson, K. A., Left, P. and Williams, M. (1994). Nomenclature and classification of purinoceptors. Pharmacol. Rev. 46, 143-156
  8. Garthwaite, J., Charles S. L. and Chess-Williams R. (1988). EndotheliumA] derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385-388 https://doi.org/10.1038/336385a0
  9. Gerber, U. and Gahwiler, B. H. (1994). $GABA_B$ and adenosine receptors mediate enhancement of the $K^+$ current, $I_{AHP}$by reducing adenylate cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol. 72, 2360-2367 https://doi.org/10.1152/jn.1994.72.5.2360
  10. Hong, K. W., Pyo, K. M., Lee, W. S., Yu, S. S. and Rhim, B. Y. (1994). Pharmacological evidence that calcitonin-related peptide is implicated in cerebral autoregulation. Am. J. Heart. Circ. Physiol. 266, H11-H16 https://doi.org/10.1152/ajpheart.1994.266.1.H11
  11. Hong, K. W., Shin, H. K., Kim, H. H., Choi, J. M., Rhim, B. Y. and Lee W. S. (1999). Metabolism of exogenous cAMP to adenosine and its role for vasodilation during cerebral autoregulation in rat pial artery. Am. J. Heart. Circ. Physiol. 276, H376-H382 https://doi.org/10.1152/ajpheart.1999.276.2.H376
  12. Hong, K. W., Yoo, S. E., Yu, S. S., Lee, J. Y. and Rhim, B. Y. (1996). Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles. Am. J. Heart. Circ. Physiol. 270, H317-H323 https://doi.org/10.1152/ajpheart.1996.270.1.H317
  13. Hyman, A. L., Kadowitz, P. J. and Lippton, H. L. (1989). Methylene blue selectively inhibits pulmonary vasodilator responses in cats. J. Appl. Physiol. 66, 1513-1517 https://doi.org/10.1063/1.344411
  14. Jiang, H., Colbran, J. L., Francis, S. H. and Corbin, J. D. (1992). Direct evidence for cross-activation of cGMP-dependent protein kinase by cAMP in pig coronary arteries. J. Biol. Chem. 267, 1015-1019
  15. Liang, B. T. and Haltiwanger, B. (1995). Adenosine $A_{2a}$ and $A_{2b}$ receptors in cultured fetal chick heart cells. High-and lowaffinity coupling to stimulation of myocyte contractility and cAMP accumulation. Circ. Res. 76, 242-251 https://doi.org/10.1161/01.RES.76.2.242
  16. Martin, P. L. (1992). Relative agonist potencies of C2-substituted analogs of adenosine: evidence for adenosine $A_{2B}$ receptors in the guinea pig aorta. Eur. J. Pharmacol. 216, 235-242 https://doi.org/10.1016/0014-2999(92)90365-B
  17. Martin, P. L. and Potts, A. A. (1994). The endothelium of the rat renal artery plays an obligatory role in $A_2$ adenosine receptor-mediated relaxation induced by 5'-N-ethylcarboxamidoadenosine and $N^6$-cyclopentyladenosine. J. Pharmacol. Exp. Ther. 270, 893-899
  18. Mian, R. and Marshall, J. M. (1991). The role of adenosine in dilator responses induced in arterioles and venules of rat skeletal muscle by systemic hypoxia. J. Physiol. 443, 499-511 https://doi.org/10.1113/jphysiol.1991.sp018847
  19. Ngai, A. C. and Winn, H. R. (1993). Effects of adenosine and its analogues on isolated arterioles: extraluminal and intraluminal application. Circ. Res. 73, 448-457 https://doi.org/10.1161/01.RES.73.3.448
  20. Nicoll, R. A. (1988). The coupling of neurotransmitter receptor to ion channels in the brain. Science 241, 545-551 https://doi.org/10.1126/science.2456612
  21. Olah, M. E. and Stiles, G. L. (1996). Adenosine receptor subtypes: characterization and therapeutic regulation. Annu. Rev. Pharmacol. Toxicol. 35, 581-606 https://doi.org/10.1146/annurev.pa.35.040195.003053
  22. Shin, H., K., Shin, Y., W. and Hong, K., W. (2000). Role of adenosine $A_{2B}$ receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation. Am. J. Physiol.-Heart and Circulatory Physiology 278, H339-H344 https://doi.org/10.1152/ajpheart.2000.278.2.H339
  23. Skinner, M. R. and Marshall, J. M. (1996). Studies on the roles of ATP, adenosine and nitric oxide in mediating muscle vasodilation induced in the rat by acute systemic hypoxia. J. Physiol. 495, 553-560 https://doi.org/10.1113/jphysiol.1996.sp021615
  24. Stehle, J. H., Rivkees, S. A., Lee, J. J., Weaver, D. R., Deeds, J. D. and Reppert, S. M. (1992). Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol. Endocrinol. 6, 384-393 https://doi.org/10.1210/me.6.3.384
  25. Stone, G. A., Jarvis, M. F., Sills, M. S., Weeks, B., Snowhill, E. W. and Williams, M. (1988). Species differences in high affinity adenosine $A_2$ binding sites in striatal membranes from mammalian brain. Drug Develop. Res. 15, 31-46 https://doi.org/10.1002/ddr.430150104
  26. Strohmeier, G. R., Reppert, S. M., Lencer, W. I. and Madara, J. L. (1995). The $A_{2b}$ adenosine receptor mediates camp responses to adenosine receptor agonists in human intestinal epithelia. J. Biol. Chem. 270, 2387-2941 https://doi.org/10.1074/jbc.270.5.2387
  27. Thomas, T. and Marshall, J. M. (1994). Interdependence of respiratory and cardiovascular changes induced by systemic hypoxia in the rat: the role of adenosine. J. Physiol. 480, 627-636 https://doi.org/10.1113/jphysiol.1994.sp020389
  28. Trussel, L. O. and Jackson, M. B. (1985). Adenosine-axtivated potassium conductance in cultured striatal neurons. Proc. Natl Acad. Sci. USA. 82, 4857-4861
  29. Van Calker, D., Muller, M. and Hamprecht, B. (1979). Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33, 999-1005 https://doi.org/10.1111/j.1471-4159.1979.tb05236.x
  30. Van Wylen, D. G. L., Park, T. S., Rubio, R. and Berne, R M. (1989). The effect of local infusion of adenosine and adenosine analogues on local cerebral blood flow. J. Cereb. Blood. Flow. Metab. 9, 556-562 https://doi.org/10.1038/jcbfm.1989.79
  31. Watts, A.E., Hicks, G. A and Henderson, G.(1995). Putative preand postsynaptic ATP-sensitive potassium channels in the rat substantia nigra in vitro. J. Neurosci. 15(4), 3065-3074
  32. Webb, R. L., Sills, M. A., Chovan, J. P., Balwierczak, J. L. and Francis. J. E. (1992). CGS21680: a potent selective adenosine $A_2$ receptor agonist. Cardiovasc. Drug Rev. 10. 26-53.1 https://doi.org/10.1111/j.1527-3466.1992.tb00235.x
  33. Winn, H. R., Rubio, R. and Berne, R. M. (1981). The role of adenosine in the regulation of cerebral blood flow. J. Cereb. Blood. Flow. Metab. 1, 239-244 https://doi.org/10.1038/jcbfm.1981.29
  34. Wysham, D. G., Brotherton, A. E. and Heistad, D. D. (1986). Effects of forskolin on cerebral blood flow : Implications for a role of adenylate cyclase. Stroke 17, 1299-1303 https://doi.org/10.1161/01.STR.17.6.1299
  35. Yoneyama, F., Yamada, H., Satoh, K. and Taira, N. (1992). Vasodepressor mechani of 2-(l-octynyl)-adenosine (YT-146), a selective adenosine $A_2$ receptor agonist, involve the opening of glibenclamide-sensitive $K^+$ channels. Eur. J. Pharmacol. 213, 199-204 https://doi.org/10.1016/0014-2999(92)90682-T
  36. Zhou, H. L. and Torphy, T. J. (1991). Relationship between cyclic guanosine monophosphate accumulation and relaxation of canine trachealis induced by nitrovasodilators. J. Pharmacol. Exp. Ther. 258, 972-978