Reaction Stability of Co/Ni Composite Silicide on Side-wall Spacer with Silicidation Temperatures

Co/Ni 복합 실리사이드 제조 온도에 따른 측벽 스페이서 물질 반응 안정성 연구

  • Song, Oh-Sung (Dept. of Materials Science and Engineering, University of Seoul) ;
  • Kim, Sang-Yeob (Dept. of Materials Science and Engineering, University of Seoul) ;
  • Jung, Young-Soon (Dept. of Materials Science and Engineering, University of Seoul)
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 김상엽 (서울시립대학교 신소재공학과) ;
  • 정영순 (서울시립대학교 신소재공학과)
  • Published : 2005.06.01

Abstract

We investigate the reaction stability of cobalt and nickel with side-wall materials of $SiO_2\;and\;Si_3N_4$. We deposited 15nm-Co and 15nm-Ni on $SiO_2(200nm)/p-type$ Si(100) and $Si_3N_4(70 nm)/p-type$ Si(100). The samples were annealed at the temperatures of $700\~1100^{\circ}C$ for 40 seconds with a rapid thermal annealer. The sheet resistance, shape, and composition of the residual materials were investigated with a 4-points probe, a field emission scanning electron microscopy, and an AES depth profiling, respectively. Samples of annealed above $1000^{\circ}C$ showed the agglomeration of residual metals with maze shape and revealed extremely high sheet resistance. The Auger depth profiling showed that the $SiO_2$ substrates had no residual metallic scums after $H_2SO_4$ cleaning while $Si_3N_4$ substrates showed some metallic residuals. Therefore, the $SiO_2$ spacer may be appropriate than $Si_3N_4$ for newly proposed Co/Ni composite salicide process.

Keywords

References

  1. J. Prokop, C. E. Zybill, S. Veprek, Thin Solid Films, 359 (2000) 39 https://doi.org/10.1016/S0040-6090(99)00654-9
  2. The International Technology RoadMap for Semiconductor, Front End Process, SIA, 2003 Edition (2003)
  3. S. L. Hsia, T. Y. Tan, P. Smith, G. E. Seebauer, D. E. Batchelor, J. Electrochem. Soc., 146 (1999) 4240 https://doi.org/10.1149/1.1392621
  4. J. B. Lasky, J. S. Nakos, O. J. Cain, P. J. Geiss, IEEE Trans. Electron Devices, 38 (1991) 262 https://doi.org/10.1109/16.69904
  5. R. T. Tung, MRS Symp. Proc., 427 (1996) 481
  6. M. L. A. Dass, D. B. Fraser, C. S. Wei, Appl. Phys. Lett., 58 (1991) 1308 https://doi.org/10.1063/1.104345
  7. S. P. Murarka, J. Electrochem. Soc., 129 (1982) 293 https://doi.org/10.1149/1.2123815
  8. B. A. Julies, D. Knoesen, R. Pretorius, D. Adams, Thin Solids Films, 347 (1999) 201 https://doi.org/10.1016/S0040-6090(99)00004-8
  9. O. S. Song, S. H. Cheong, Y. S. Jung, J. Kor. Inst. Met. & Mater., 43 (2005) 137
  10. S. B. Herner, V. Krishnamoorthy, A. Naman, K. S. Jones, H. J. Gossmann, R. T. Tung, Thin Solids Films, 302 (1997) 127 https://doi.org/10.1016/S0040-6090(96)09586-7
  11. Y. S. Ahn, O. S. Song, Kor. J. Mater. Res., 11 (2001) 71