DOI QR코드

DOI QR Code

Substituents Effect on Aziridine Chemistry: N-Inversion Energy, Reactivity and Regioselectivity of Nucleophilic Ring-opening

  • Published : 2005.09.20

Abstract

The N-inversion energies and nucleophilic ring-opening reactions of N-substituted aziridine compounds are investigated using B3LYP/6-31+$G^*$ methods, where substituents (R) on the nitrogen atom has been H (1), Me (2), Ph (3), Bn (4), CHMePh (5), $CO_2Me$ (6), COPh (7) and $SO_2Ph$ (8). The N-inversion energy with X group are decreased as the following order: R = CHMePh (17.06 kcal/mol) $\gt$ Me (16.97) $\gt$ Bn (16.70) $\gt$ H (16.64) $\gt$ $SO_2Ph$ (12.18) $\gt$ Ph (8.91) $\gt$ COPh (5.75) $\gt$ $CO_2Me$ (5.48). For reactivity of the ring opening toward cyanide ion, the aziridine 6 (R=$CO_2Me$) is shown to be the most reactive one. During the ring opening of aziridine 6 by CN$^{\ominus}$, the torsional OCNC angle becomes near to $180^{\circ}$, where the geometry allows for the effective incorporation of electrons of the nitrogen atom to the C=O bond. It would be a possible driving force for nucleophilic ring opening reaction as well as decreasing the N-inversion energy barrier. Regarding to the regioselectivity, the orientation of nucleophile in ring opening reaction appears to be different in the case of 9 and 10. The results are discussed in terms of steric/electronic effect of the $C_2$-substituents.

Keywords

References

  1. Hu, X. R. Tetrahedron 2004, 60, 2701 https://doi.org/10.1016/j.tet.2004.01.042
  2. McCoull, W.; Davis, F. A. Synthesis 2000, 1347
  3. Padwa, A.; Woolhouse, A. D. In Comprehensive Heterocyclic Chemistry; Lwowski, W., Ed.; Pergamon: Oxford, 1984; Vol. 7, pp 47-93
  4. Kasai, M.; Kono, M. Synlett 1992, 778
  5. Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599 https://doi.org/10.1002/anie.199405991
  6. Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693 https://doi.org/10.1016/S0957-4166(97)00177-8
  7. Kim, S.-W.; Noh, H.-Y.; Paek, S. I.; Ha, H.-J.; Lee, W. K. Bull. Korean Chem. Soc. 2004, 1617
  8. Yun, J. M.; Sim, T. B.; Hahm, H. S.; Lee, W. K.; Ha, H.-J. J. Org. Chem. 2003, 68, 7675 https://doi.org/10.1021/jo034755a
  9. Lee, W. K.; Ha, H.-J. Aldrichimica Acta 2003, 36, 57
  10. Park, C. S.; Kim, M. S.; Sim, T. B.; Pyun, D. K.; Lee, C. H.; Lee, W. K. J. Org. Chem. 2003, 68, 43 https://doi.org/10.1021/jo025545l
  11. Chang, J.-W.; Ha, H.-J.; Park, C. S.; Kim, M. S.; Lee, W. K. Heterocycles 2002, 57, 1143 https://doi.org/10.3987/COM-02-9489
  12. Lee, K.-D.; Suh, J.-M.; Park, J.-H.; Ha, H.-J.; Choi, H. G.; Park, C. S.; Chang, J. W.; Lee, W. K.; Dong, Y.; Yun, H. Tetrahedron 2001, 57, 8267 https://doi.org/10.1016/S0040-4020(01)00823-7
  13. Park, C. S.; Choi, H. G.; Lee, H.; Lee, W. K.; Ha, H.-J. Tetrahedron: Asymmetry 2000, 11, 3283 https://doi.org/10.1016/S0957-4166(00)00311-6
  14. Bae, J. H.; Shin, S.-H.; Park, C. S.; Lee, W. K. Tetrahedron 1999, 55, 10041 https://doi.org/10.1016/S0040-4020(99)00538-4
  15. Choi, S.-K.; Lee, J.-S.; Kim, J.-H.; Lee, W. K. J. Org. Chem. 1997, 62, 743 https://doi.org/10.1021/jo961168z
  16. Ebrahini, A.; Deyhimi, F.; Roohi, H. J. Mol. Struct. 2001, 247
  17. Nielsen, I. M. B. J. Phys. Chem. A 1998, 102(18), 3193-3201 https://doi.org/10.1021/jp9805499
  18. Gaussian 98, Revision A.7, Frisch, M. J. et al., Gaussian, Inc., Pittsburgh, PA, 2002
  19. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 3654
  20. Becke, A. D. J. Chem. Phys. 1993, 1372
  21. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 785
  22. Ra, C. S.; Park, G. Bull. Korean Chem. Soc. 2004, 25, 1461 https://doi.org/10.5012/bkcs.2004.25.10.1461
  23. Park, G. Bull. Korean Chem. Soc. 2003, 24, 265 https://doi.org/10.1007/s11814-007-5058-4
  24. Ra, C. S.; Park, G. Tetrahedron Lett. 2003, 44, 1099 https://doi.org/10.1016/S0040-4039(02)02715-6
  25. Torssell, K. B. G. Nitrile Oxides Organic Nitro Chemistry Series; VCH: New York, 1988
  26. Davis, F. A.; Jenkins, Jr. R. J. Asymmetric Synthesis, vol. 4; Academic Press: New York, 1983
  27. Forni, A.; Moretti, I.; Proxianky, A. V.; Torre, G. J. Chem. Soc. Chem. Commun. 1981, 588
  28. Wu, J.; Hou, X.-L.; Dai, L.-X. J. Org. Chem. 2000, 1344
  29. Farras, J.; Ginesta, X.; Sutton, P. W.; Taltavull, J.; Egelar, F.; Romea, P.; Urpi, F.; Vilarrasa, J. Tetrahedron 2001, 7665
  30. Yadav, J. S.; Reddy, B. V. S.; Parimala, G.; Reddy, V. Synthesis 2002, 2383
  31. Matsubara, S.; Kodama, T.; Utimoto, K. Tetrahedron Lett. 1990, 6379

Cited by

  1. Electronic and chelation effects on the unusual C2-methylation of N-(para-substituted)phenylaziridines with lithium organocuprates vol.32, pp.9, 2011, https://doi.org/10.1002/jcc.21768
  2. Directed Nickel-Catalyzed Negishi Cross Coupling of Alkyl Aziridines vol.135, pp.36, 2013, https://doi.org/10.1021/ja4076716
  3. Aziridine Nitrogen Inversion by Dynamic NMR: Activation Parameters in a Fused Bicyclic Structure vol.78, pp.22, 2013, https://doi.org/10.1021/jo4022315
  4. F]Fluoride vol.4, pp.1, 2015, https://doi.org/10.1002/open.201402081
  5. Design of a new rotary molecular machine based on nitrogen inversion: a DFT investigation vol.57, pp.3, 2016, https://doi.org/10.1134/S0022476616030057
  6. Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Cyanide Ion vol.31, pp.3, 2005, https://doi.org/10.5012/bkcs.2010.31.03.689
  7. N‐Inversion in N‐phenyloxaziridine: substituent and solvent effects via density functional theory vol.66, pp.10, 2005, https://doi.org/10.1002/jccs.201800170
  8. Gold-Catalyzed Conversion of Highly Strained Compounds vol.121, pp.14, 2005, https://doi.org/10.1021/acs.chemrev.0c00624