DOI QR코드

DOI QR Code

Microcavity Effect of Top-emission Organic Light-emitting Diodes Using Aluminum Cathode and Anode

  • Lee, Chang-Jun (Department of Chemistry/Display Research Center, The Catholic University of Korea) ;
  • Park, Young-Il (Department of Chemistry/Display Research Center, The Catholic University of Korea) ;
  • Kwon, Jang-Hyuk (Department of Information Display, Kyung Hee University) ;
  • Park, Jong-Wook (Department of Chemistry/Display Research Center, The Catholic University of Korea)
  • Published : 2005.09.20

Abstract

We report microcavity effect of top emission organic light-emitting diodes (OLEDs) by using Al cathode and anode, which are feasible for not only top emission EL and angle dependant effects but facile evaporation process without ion sputtering. The device in case of $Alq_3$ green emission showed largely shifted EL maximum wavelength as 650 nm maximum emission. It was also observed that detection angle causes different EL maximum wavelength and different CIE values in R, G, B color emission. As a result, the green device using $Alq_3$ emission showed 650 nm emission ($0^{\circ}$) to 576 nm emission ($90^{\circ}$) as detection angle changed. We believe that these phenomena can be also explained with microcavity effect which depends on the different length of light path caused by detection angle.

Keywords

References

  1. Tang, C. W.; Van Slyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610 https://doi.org/10.1063/1.343409
  2. Strukjelj, M.; Jordan, R.; Dodabalapur, A. J. Am. Chem. Soc. 1996, 118, 1213 https://doi.org/10.1021/ja953302n
  3. Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489 https://doi.org/10.1063/1.101586
  4. Hung, L. S.; Tang, C. W.; Mason, M. G.; Raychaudhuri, P.; Madathil, J. Appl. Phys. Lett. 2001, 78, 544 https://doi.org/10.1063/1.1327273
  5. Fisher, T. A.; Lidzey, D. G.; Pate, M. A.; Weaver, M. S.; Whittaker, D. M.; Skolnick, M. S.; Bradley, D. D. C. Appl. Phys. Lett. 1995, 67, 1355 https://doi.org/10.1063/1.115549
  6. Jordan, R. H.; Rothberg, L. J.; Dodabalapur, A.; Slusher, R. E. Appl. Phys. Lett. 1996, 69, 1997 https://doi.org/10.1063/1.116858
  7. Riel, H.; Kang, S.; Beierlein, T.; Ruhstaller, B.; Riess, W. Appl. Phys. Lett. 2003, 82, 466 https://doi.org/10.1063/1.1537052
  8. Han, S.; Feng, X.; Lu, Z. H.; Johnson, D.; Wood, R. Appl. Phys. Lett. 2003, 82, 2715 https://doi.org/10.1063/1.1567048
  9. Takada, N.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1993, 63, 2032 https://doi.org/10.1063/1.110582
  10. Jean, F.; Mulot, J.; Geffroy, B.; Denis, C.; Cambon, P. Appl. Phys. Lett. 2002, 81, 1717 https://doi.org/10.1063/1.1503865

Cited by

  1. ITO-free top emitting organic light emitting diodes with enhanced light out-coupling vol.8, pp.1, 2013, https://doi.org/10.1002/lpor.201300148
  2. Trilayer metal electrode as an anode in red phosphorescent organic light-emitting diodes vol.67, pp.3, 2015, https://doi.org/10.3938/jkps.67.568
  3. P-185: Study on Viewing Angle Characteristics by Color Layer with Cavity Effect vol.48, pp.1, 2017, https://doi.org/10.1002/sdtp.12040
  4. Formation of Recombination Zone in Blue Phosphorescent Organic Light-Emitting Diodes with Different Electron Transport Layers and Its Effects on Device Performance vol.3, pp.8, 2014, https://doi.org/10.1149/2.0161408jss
  5. Configuration Effects of Exciton Blocking Layer with Low Electron Mobility's Electron Transport Layer in Blue Phosphorescent Organic Light-Emitting Diodes vol.5, pp.2, 2016, https://doi.org/10.1149/2.0021602jss
  6. Effects of Recombination Zone Formation on Optical Path Length and Device Performance in Blue Phosphorescent Organic Light-Emitting Diodes with Quantum Well Structure vol.5, pp.3, 2016, https://doi.org/10.1149/2.0241603jss
  7. Enhancement of Luminance Characteristics in Top-Emission Organic Light Emitting Diode with Cr/Al/Cr Anodes vol.46, pp.6A, 2007, https://doi.org/10.1143/JJAP.46.3618
  8. PIN OLEDs — Improved structures and materials to enhance device lifetime vol.16, pp.2, 2008, https://doi.org/10.1889/1.2841854
  9. Layer Thickness-dependent Electrical and Optical Properties of Bottom- and Top-emission Organic Light-emitting Diodes vol.10, pp.1, 2009, https://doi.org/10.4313/teem.2009.10.1.028
  10. Microcavity Effect in Compliance with Interference of Light in Alq3Based Top-Emission Organic Light-Emitting Diodes vol.520, pp.1, 2005, https://doi.org/10.1080/15421401003608469
  11. Synthesis and optical properties of novel anthracene-based stilbene derivatives containing an 1,3,4-oxadiazole unit vol.93, pp.1, 2005, https://doi.org/10.1016/j.dyepig.2011.10.004
  12. Highly efficient top-emission organic light-emitting diode on an oxidized aluminum anode vol.125, pp.14, 2019, https://doi.org/10.1063/1.5092979
  13. Light Out‐Coupling Management in Perovskite LEDs—What Can We Learn from the Past? vol.30, pp.38, 2005, https://doi.org/10.1002/adfm.202002570