DOI QR코드

DOI QR Code

Aggregation of α-Synuclein Induced by Oxidized Catecholamines as a Potential Mechanism of Lewy Body

  • Published : 2005.08.20

Abstract

Lewy bodies (LBs) are neuronal inclusions that are closely related to Parkinson's disease (PD). The filamentous component of LB from patients with PD contains biochemically altered $\alpha$-synuclein. We have investigated the effect of the oxidized products of catecholamines on the modification of $\alpha$-synuclein. When $\alpha$-synuclein was incubated with the oxidized 3,4-dihydroxyphenylalanine (L-DOPA) or dopamine, the protein was induced to be aggregated. The oxidized catecholamine-mediated $\alpha$-synuclein aggregation was enhanced by copper ion. Radical scavengers, azide and N-acetyl cysteine significantly prevented the oxidized catecholamine-mediated $\alpha$-synuclein aggregation. The results suggest that free radical may play a role in $\alpha$-synuclein aggregation. Exposure of $\alpha$-synuclein to the oxidized products of catecholamines led to the formation of dityrosine. Antioxidant dipeptides carnosine, homocarnosine and anserine significantly protected $\alpha$-synuclein from the aggregation induced by the oxidized products of catecholamines.

Keywords

References

  1. Takeda, A.; Mallory, M.; Sundsumo, M.; Honer, W.; Hansen, L.; Masliah, E. Am. J. Pathol. 1998, 152, 367-372
  2. Spillantini, M. G.; Schmit, M. L.; Lee, V.-M.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. Nature 1997, 388, 839-840 https://doi.org/10.1038/42166
  3. Wakabayashi, K.; Matsumoto, K.; Takayama, K.; Yoshimoto, M.; Takahashi, H. Neurosci. Lett. 1997, 239, 45-48 https://doi.org/10.1016/S0304-3940(97)00891-4
  4. Irizarry, M. C.; Growdon, W.; Gomez-Isla, T.; Newell, K.; George, J. M.; Clayton, D. F.; Hyman, B. T. J. Neuropathol. Exp. Neurol. 1998, 57, 334-337 https://doi.org/10.1097/00005072-199804000-00005
  5. Spillantini, M. G.; Crowther, R. A.; Jakes, R.; Hasegawa, M.; Goedert, M. Proc. Natl. Acad. Saci. U.S.A. 1998, 95, 6469- 6473 https://doi.org/10.1073/pnas.95.11.6469
  6. Baba, M.; Nakajo, S.; Tu, P.-H.; Tomita, T.; Nakaya, K.; Lee, V. M.; Trojanowski, J. Q.; Iwatsubo, T. Am. J. Pathol. 1998, 152, 879-884
  7. Takeda, A.; Hashimoto, M.; Mallory, M.; Sundsumo, M.; Hansen, L.; Sisk, A.; Masliah, E. Lab. Invest. 1998, 78, 1169-1177
  8. Goedert, M.; Spillantini, M. G.; Davies, S. W. Curr. Opin. Neurobiol. 1998, 8, 619-632 https://doi.org/10.1016/S0959-4388(98)80090-1
  9. Paik, S. R.; Shin, H. J.; Lee, J. H. Arch. Biochem. Biophys. 2000, 378, 269-277 https://doi.org/10.1006/abbi.2000.1822
  10. Dexter, D. T.; Cater, C. J.; Wells, F. R.; Javoy-Agid, F.; Agid, Y.; Lees, A.; Jenner, P.; Marsden, C. D. J. Neurochem. 1989, 52, 381- 389 https://doi.org/10.1111/j.1471-4159.1989.tb09133.x
  11. Jenner, P. Pathol. Biol. (Paris) 1996, 44, 57-64
  12. Sian, J.; Dexter, D. T.; Lees, A. J.; Daniel, S.; Agid, Y.; Javoy- Agid, F.; Jenner, P.; Marsden, C. D. Ann. Neurol. 1994, 36, 348- 355 https://doi.org/10.1002/ana.410360305
  13. Dexter, D. T.; Jenner, P.; Schapira, A. H.; Marsden, C. D. Ann. Neurol. 1992, 32 Suppl, S94-100 https://doi.org/10.1002/ana.410320115
  14. Jellinger, K. A.; Kienzl, E.; Rumpelmair, G.; Paulus, W.; Riederer, P.; Stachelberger, H.; Youdim, M. B.; Ben-Shachar, D. Adv. Neurol. 1993, 60, 267-272
  15. Waite, J. H. Comp. Biochem. Physiol. B 1990, 97, 19-29 https://doi.org/10.1016/0305-0491(90)90172-P
  16. Miller, D. M.; Buettner, G. R.; Aust, S. D. Free Radic. Biol. Med. 1990, 8, 95-108 https://doi.org/10.1016/0891-5849(90)90148-C
  17. Graham, D. G. Mol. Pharmacol. 1978, 14, 633-643
  18. Graham, D. G.; Tiffany, S. M.; Bell, W. R. Jr.; Gutknecht, W. F. Mol. Pharmacol. 1978, 14, 644-653
  19. Melamed, E.; Offen, D.; Shirvan, A.; Djaldetti, R; Barzilai, A.; Ziv, I. Ann. Neurol. 1998, 44, S149-154 https://doi.org/10.1002/ana.410440722
  20. Stokes, A. H.; Hastings, T. G.; Vrana, K. E. J. Neurosci. Res. 1999, 55, 659-665 https://doi.org/10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C
  21. Jones, D. C.; Gunasekar, P. G.; Borowitz, J. L.; Isom, G. E. J. Neurochem. 2000, 74, 2296-2304 https://doi.org/10.1046/j.1471-4159.2000.0742296.x
  22. Smythies, J. R. Schizophr. Res. 1997, 24, 357-364 https://doi.org/10.1016/S0920-9964(97)00005-4
  23. Pileblad, E.; Slivka, A.; Bratvold, D.; Cohen, G. Arch. Biochem. Biophys. 1988, 263, 447-452 https://doi.org/10.1016/0003-9861(88)90657-1
  24. Sutton, H. C.; Winterbourn, C. C. Free Radic. Biol. Med. 1989, 6, 53-60 https://doi.org/10.1016/0891-5849(89)90160-3
  25. Kang, J. H. Bull. Korean Chem. Soc. 2004, 25, 625-628 https://doi.org/10.5012/bkcs.2004.25.5.625
  26. Jakes, R.; Spillantini, M. G.; Goedert, M. FEBS Lett. 1994, 345, 27-32 https://doi.org/10.1016/0014-5793(94)00395-5
  27. Stadtman, E. R. Ann. Rev. Bichem. 1993, 62, 792-821
  28. Kohen, R.; Yamamoto, Y.; Cundy, K. C.; Ames, B. N. Proc. Natl. Acad. Sci. USA 1988, 85, 3175-3179 https://doi.org/10.1073/pnas.85.9.3175
  29. O'Dowd, J. J.; Robins, D. J.; Miller, D. J. Biochem. Biophys. Acta 1988, 967, 241-249 https://doi.org/10.1016/0304-4165(88)90015-3
  30. Harris, R. C.; Marlin, D. J.; Dunnett, M.; Snow, D.; Hultman, E. Comp. Biochem. Physiol. A 1990, 97, 249-251 https://doi.org/10.1016/0300-9629(90)90180-Z
  31. Brown, C. E. J. Theorl. Biol. 1981, 88, 245-256 https://doi.org/10.1016/0022-5193(81)90073-4
  32. Chan, W. K. M.; Decker, E. A.; Lee, J. B.; Butterfield, D. A. J. Agric. Food Chem. 1994, 42, 1407-1410 https://doi.org/10.1021/jf00043a003
  33. Kang, J. H. Bull. Korean Chem. Soc. 2005, 26, 178-180 https://doi.org/10.5012/bkcs.2005.26.1.178
  34. Halliwell, B. Acta Neurol. Scand. 1989, 126, 23-33
  35. Youdim, M. B.; Ben-Shachar, D.; Riederer, P. Acta Neurol. Scand. 1989, 126, 47-54
  36. Jenner, P.; Olanow, C. W. Neurology 1996, 47, S161-170 https://doi.org/10.1212/WNL.47.6_Suppl_3.161S
  37. Hashimoto, M.; Hsu, L. J.; Xia, Y.; Takeda, A. M.; Sundsumo, M.; Masliah, E. Neuroreport 1999, 10, 717-721 https://doi.org/10.1097/00001756-199903170-00011
  38. Paik, S. R.; Shin, H. J.; Lee, J. H.; Chang, C. S.; Kim, J. Biochem. J. 1999, 340, 821-828 https://doi.org/10.1042/0264-6021:3400821
  39. Markesbery, W. R.; Carney, J. M. Brain Pathol. 1999, 9, 133-146
  40. Kang, J. H.; Kim, S. M. Mol. Cells 1997, 7, 553-558
  41. Choi, S. Y.; Kwon, H. Y.; Kwon, O. B.; Kang, J. H. Biochim. Biophys. Acta 1999, 1472, 651-657 https://doi.org/10.1016/S0304-4165(99)00189-0
  42. Ilic, T.; Jovanovic, M.; Jovicic, A.; Tomovic, M. Vojnosanit. Pregl. 1998, 55, 463-468
  43. Ilic, T.; Jovanovic, M.; Jovicic, A.; Tomovic, M. Funct. Neurol. 1999, 14, 141-147
  44. Sagripant, J. L.; Swicord, M. L.; Davis, C. C. Radiat. Res. 1987, 110, 219-231 https://doi.org/10.2307/3576900
  45. Imlay, J. A.; Chin, S. M.; Linn, S. Science 1988, 240, 640-642 https://doi.org/10.1126/science.2834821
  46. Sagripant, J. L.; Kraemer, K. H. J. Biol. Chem. 1989, 264, 1729- 1734
  47. O'Connell, M. J.; Peters, T. J. Chem. Phys. Lipids 1987, 45, 241- 249 https://doi.org/10.1016/0009-3084(87)90067-3
  48. Pall, H. S.; Williams, A. C.; Blake, D. R.; Lunec, J.; Gutteridge, J. M.; Hall M.; Taylor A. Lancet. 1987, 2, 238-241
  49. Multhaup, G.; Schlicksupp, A.; Hesse, L.; Beher, D.; Ruppert, T.; Masters, C. L.; Beyreuther, K. Science 1996, 271, 1406- 1409 https://doi.org/10.1126/science.271.5254.1406

Cited by

  1. Structural and Morphological Characterization of Aggregated Species of α-Synuclein Induced by Docosahexaenoic Acid vol.286, pp.25, 2011, https://doi.org/10.1074/jbc.M110.202937
  2. Alpha‐Synuclein Dopaminylation Presented in Plasma of Both Healthy Subjects and Parkinson's Disease Patients vol.14, pp.5, 2005, https://doi.org/10.1002/prca.201900117