DOI QR코드

DOI QR Code

Low Potential Amperometric Determination of Ascorbic Acid at a Single-Wall Carbon Nanotubes-Dihexadecyl Hydrogen Phosphate Composite Film Modified Electrode

  • Fei, Junjie (College of Chemistry, Key Laboratory of Advanced Materials & Rheological Properties of Ministry of Education, Xiangtan University) ;
  • Wu, Kangbing (Department of Chemistry, Huazhong University of Science and Technology) ;
  • Yi, Lanhua (College of Chemistry, Key Laboratory of Advanced Materials & Rheological Properties of Ministry of Education, Xiangtan University) ;
  • Li, Junan (College of Chemistry, Key Laboratory of Advanced Materials & Rheological Properties of Ministry of Education, Xiangtan University)
  • Published : 2005.09.20

Abstract

A sensitive and selective electrochemical method was developed for the amperometric determination of ascorbic acid (AA) at a glassy carbon electrode (GCE) modified with single-wall carbon nanotubesdihexadecyl hydrogen phosphate (SWNT-DHP) composite film. The SWNT-DHP composite film modified GCE was characterized with SEM. The SWNT-DHP composite film modified GCE exhibited excellent electrocatalytic behaviors toward the oxidation of AA. Compared with the bare GCE, the oxidation current of AA increased greatly and the oxidation peak potential of AA shifted negatively to about -0.018 V (vs. SCE) at the SWNT-DHP composite film modified GCE. The experimental parameters, which influence the oxidation current of AA, were optimized. Under the optimal conditions, the amperometric measurements were performed at a applied potential of -0.015 V and a linear response of AA was obtained in the range from 4 ${\times}$ $10^{-7}$ to 1 ${\times}$ $10^{-4}$ mol $L^{-1}$ and with a limit of detect (LOD) of 1.5 ${\times}$ $10^{-7}$ mol $L^{-1}$. The interferences study showed that the SWNT-DHP composite film modified GCE exhibited good sensitivity and excellent selectivity in the presence of high concentration uric acid and dopamine. The proposed procedure was successfully applied to detect AA in human urine samples with satisfactory results.

Keywords

References

  1. Adams, R. N. Anal. Chem. 1976, 48, 1126A-1138A https://doi.org/10.1021/ac50008a001
  2. Gao, Z .Q.; Huang, H. Chem. Comm. 1998, 2107-2108
  3. Fei, J. J.; Luo, L. M.; Hu, S. S.; Gao, Z. Q. Electroanalysis 2004, 16, 319-323 https://doi.org/10.1002/elan.200302827
  4. Korell, U.; Lennox, R. B. Anal. Chem. 1992, 64, 147-151
  5. Gao, Z. Q.; Siow, K. S.; Ng, A.; Zhang, Y. Anal. Chim. Acta 1997, 343, 49-87 https://doi.org/10.1016/S0003-2670(96)00605-8
  6. Doerty, P.; Stanley, M. A.; Vos, J. G. Analyst 1995, 120, 2371-2376 https://doi.org/10.1039/an9952002371
  7. Cai, C.; Xue, K.; Xu, S. J. Electroanal. Chem. 2000, 486, 111-118 https://doi.org/10.1016/S0022-0728(00)00114-5
  8. Nalini, B.; Narayanan, S. S. Anal. Chim. Acta 2000, 405, 93-97 https://doi.org/10.1016/S0003-2670(99)00689-3
  9. Oni, J.; Westbroek, P.; Nyokong, T. Electroanalysis 2003, 15, 847-854 https://doi.org/10.1002/elan.200390104
  10. Zhang, L.; Lin, X. Analyst 2001, 126, 367-370 https://doi.org/10.1039/b009415n
  11. Tang, J.; Wu, Z.; Wang, J.; Wang, E. Electroanalysis 2001, 13, 1315-1318 https://doi.org/10.1002/1521-4109(200111)13:16<1315::AID-ELAN1315>3.0.CO;2-#
  12. Iijima, S. Nature 1991, 354, 56-58 https://doi.org/10.1038/354056a0
  13. Ajayan, P. M. Chem. Rev. 1999, 99, 1787-1799 https://doi.org/10.1021/cr970102g
  14. Wong, S.; Joselevich, E.; Woolley, A.; Cheung, C.; Lieber, C. Nature 1998, 394, 52-55 https://doi.org/10.1038/27873
  15. De Heer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179-1180 https://doi.org/10.1126/science.270.5239.1179
  16. Baughman, R. H.; Cui, C. C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Science 1999, 284, 1340-1344 https://doi.org/10.1126/science.284.5418.1340
  17. Tans, S.; Verschueren, A.; Dekker, C. Nature 1998, 393, 49-52 https://doi.org/10.1038/29954
  18. Che, G. L.; Lakschmi, B. B.; Fisher, E. R.; Martin, C. R. Nature 1998, 393, 346-349 https://doi.org/10.1038/30694
  19. Dresselhaus, M. S. Nature 1992, 358, 195-196 https://doi.org/10.1038/358195a0
  20. Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91-93 https://doi.org/10.1126/science.285.5424.91
  21. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Science 2000, 287, 622-625 https://doi.org/10.1126/science.287.5453.622
  22. Britto, P. J.; Santhanam, K. S. V.; Ajayan, P. M. Bioelectrochem. Bioenerg. 1996, 41, 121-125 https://doi.org/10.1016/0302-4598(96)05078-7
  23. Britto, P. J.; Santhanam, K. S. V.; Alonso, V.; Rubio, A.; Ajayan, P. M. Adv. Mater. 1999, 11, 154-157 https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B
  24. Davis, J. J.; Coles, R. J.; Hill, H. A. O. J. Electroanal. Chem. 1997, 440, 279-282
  25. Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Electrochem. Commun. 2002, 4, 743-752 https://doi.org/10.1016/S1388-2481(02)00451-4
  26. Zhao, Q.; Gu, Z.; Zhuang, Q. Electrochem. Commun. 2004, 6, 83-86 https://doi.org/10.1016/j.elecom.2003.10.014
  27. Sun, Y.; Fei, J.; Wu, K.; Hu, S. Anal. Bioanal. Chem. 2003, 375, 544-549
  28. Wu, K.; Fei, J.; Hu, S. Anal. Biochem. 2003, 318, 100-106 https://doi.org/10.1016/S0003-2697(03)00174-X
  29. Wu, K.; Ji, X.; Fei, J.; Hu, S. Nanotechnology 2004, 15, 287-291 https://doi.org/10.1088/0957-4484/15/3/010
  30. Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. Anal. Chem. 2001, 73, 915-920 https://doi.org/10.1021/ac000967l
  31. Wang, Z.; Liu, J.; Liang, Q.; Wang, Y.; Luo, G. Analyst 2002, 127, 653-658 https://doi.org/10.1039/b201060g
  32. Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green, M. L. H. Nature 1994, 372, 159-162 https://doi.org/10.1038/372159a0
  33. Wang, F.; Fei, J.; Hu, S. Colloid Surface B 2004, 39, 95-101 https://doi.org/10.1016/j.colsurfb.2004.07.007
  34. Hu, I. F.; Kuwana, T. Anal. Chem. 1986, 58, 3235-3239 https://doi.org/10.1021/ac00127a069
  35. Kambinas, P.; Jannakoudakis, D. J. Electroanal. Chem. 1984, 160, 159-167 https://doi.org/10.1016/S0022-0728(84)80122-9
  36. Wehmeyer, K. R.; Wightman, R. M. Anal. Chem. 1985, 57, 1989-1993 https://doi.org/10.1021/ac00286a046

Cited by

  1. Electrochemical Determination of 6-Benzylaminopurine (6-BAP) Using a Single-wall Carbon Nanotube-dicetyl Phosphate Film Coated Glassy Carbon Electrode vol.27, pp.7, 2005, https://doi.org/10.5012/bkcs.2006.27.7.991
  2. Electrochemical Assay of Neurotransmitter Glycine in Brain Cells vol.28, pp.4, 2005, https://doi.org/10.5012/bkcs.2007.28.4.515
  3. Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes vol.28, pp.7, 2005, https://doi.org/10.5012/bkcs.2007.28.7.1171
  4. The Voltammetric Determination of Phenolphthalein on Multi-walled Carbon Nanotube-DHP Composite Film-modified Glassy Carbon Electrode vol.17, pp.3, 2005, https://doi.org/10.1080/15363830902779619
  5. Electrochemical determination of vitamin C in the presence of uric acid by a novel TiO2 nanoparticles modified carbon paste electrode vol.21, pp.12, 2010, https://doi.org/10.1016/j.cclet.2010.07.026
  6. A novel sensitive laccase biosensor using gold nanoparticles and poly L‐arginine to detect catechol in natural water vol.66, pp.4, 2005, https://doi.org/10.1002/bab.1746